![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0lempt | Structured version Visualization version GIF version |
Description: If all of the terms of sums compare, so do the sums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0lempt.xph | ⊢ Ⅎ𝑥𝜑 |
sge0lempt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0lempt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
sge0lempt.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
sge0lempt.le | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
sge0lempt | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0lempt.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0lempt.xph | . . 3 ⊢ Ⅎ𝑥𝜑 | |
3 | sge0lempt.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
4 | eqid 2727 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 2, 3, 4 | fmptdf 7121 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
6 | sge0lempt.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
7 | eqid 2727 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
8 | 2, 6, 7 | fmptdf 7121 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶(0[,]+∞)) |
9 | nfv 1910 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | |
10 | 2, 9 | nfan 1895 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝐴) |
11 | nfcv 2898 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
12 | 11 | nfcsb1 3913 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
13 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑥 ≤ | |
14 | 11 | nfcsb1 3913 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 |
15 | 12, 13, 14 | nfbr 5189 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶 |
16 | 10, 15 | nfim 1892 | . . . 4 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶) |
17 | eleq1w 2811 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
18 | 17 | anbi2d 628 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴))) |
19 | csbeq1a 3903 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
20 | csbeq1a 3903 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
21 | 19, 20 | breq12d 5155 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵 ≤ 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶)) |
22 | 18, 21 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶))) |
23 | sge0lempt.le | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) | |
24 | 16, 22, 23 | chvarfv 2226 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶) |
25 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
26 | 12 | nfel1 2914 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞) |
27 | 10, 26 | nfim 1892 | . . . . . 6 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)) |
28 | 19 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐵 ∈ (0[,]+∞) ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞))) |
29 | 18, 28 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)))) |
30 | 27, 29, 3 | chvarfv 2226 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)) |
31 | 11, 12, 19, 4 | fvmptf 7020 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ ⦋𝑦 / 𝑥⦌𝐵 ∈ (0[,]+∞)) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐵) |
32 | 25, 30, 31 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐵) |
33 | nfcv 2898 | . . . . . . . 8 ⊢ Ⅎ𝑥(0[,]+∞) | |
34 | 14, 33 | nfel 2912 | . . . . . . 7 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞) |
35 | 10, 34 | nfim 1892 | . . . . . 6 ⊢ Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)) |
36 | 20 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝐶 ∈ (0[,]+∞) ↔ ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞))) |
37 | 18, 36 | imbi12d 344 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)))) |
38 | 35, 37, 6 | chvarfv 2226 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)) |
39 | 11, 14, 20, 7 | fvmptf 7020 | . . . . 5 ⊢ ((𝑦 ∈ 𝐴 ∧ ⦋𝑦 / 𝑥⦌𝐶 ∈ (0[,]+∞)) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐶) |
40 | 25, 38, 39 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = ⦋𝑦 / 𝑥⦌𝐶) |
41 | 32, 40 | breq12d 5155 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) ↔ ⦋𝑦 / 𝑥⦌𝐵 ≤ ⦋𝑦 / 𝑥⦌𝐶)) |
42 | 24, 41 | mpbird 257 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑦) ≤ ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦)) |
43 | 1, 5, 8, 42 | sge0le 45767 | 1 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ≤ (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 ⦋csb 3889 class class class wbr 5142 ↦ cmpt 5225 ‘cfv 6542 (class class class)co 7414 0cc0 11132 +∞cpnf 11269 ≤ cle 11273 [,]cicc 13353 Σ^csumge0 45722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-z 12583 df-uz 12847 df-rp 13001 df-ico 13356 df-icc 13357 df-fz 13511 df-fzo 13654 df-seq 13993 df-exp 14053 df-hash 14316 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15458 df-sum 15659 df-sumge0 45723 |
This theorem is referenced by: sge0iunmptlemre 45775 sge0xadd 45795 meaiunlelem 45828 hoicvrrex 45916 ovnsubaddlem1 45930 sge0hsphoire 45949 hoidmv1lelem1 45951 hoidmv1lelem2 45952 hoidmv1lelem3 45953 hoidmvlelem1 45955 hoidmvlelem2 45956 hoidmvlelem4 45958 hspmbllem2 45987 ovolval5lem1 46012 |
Copyright terms: Public domain | W3C validator |