![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rncoeq | Structured version Visualization version GIF version |
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.) |
Ref | Expression |
---|---|
rncoeq | ⊢ (dom 𝐴 = ran 𝐵 → ran (𝐴 ∘ 𝐵) = ran 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmcoeq 5971 | . 2 ⊢ (dom ◡𝐵 = ran ◡𝐴 → dom (◡𝐵 ∘ ◡𝐴) = dom ◡𝐴) | |
2 | eqcom 2734 | . . 3 ⊢ (dom 𝐴 = ran 𝐵 ↔ ran 𝐵 = dom 𝐴) | |
3 | df-rn 5683 | . . . 4 ⊢ ran 𝐵 = dom ◡𝐵 | |
4 | dfdm4 5892 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
5 | 3, 4 | eqeq12i 2745 | . . 3 ⊢ (ran 𝐵 = dom 𝐴 ↔ dom ◡𝐵 = ran ◡𝐴) |
6 | 2, 5 | bitri 275 | . 2 ⊢ (dom 𝐴 = ran 𝐵 ↔ dom ◡𝐵 = ran ◡𝐴) |
7 | df-rn 5683 | . . . 4 ⊢ ran (𝐴 ∘ 𝐵) = dom ◡(𝐴 ∘ 𝐵) | |
8 | cnvco 5882 | . . . . 5 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
9 | 8 | dmeqi 5901 | . . . 4 ⊢ dom ◡(𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
10 | 7, 9 | eqtri 2755 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
11 | df-rn 5683 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
12 | 10, 11 | eqeq12i 2745 | . 2 ⊢ (ran (𝐴 ∘ 𝐵) = ran 𝐴 ↔ dom (◡𝐵 ∘ ◡𝐴) = dom ◡𝐴) |
13 | 1, 6, 12 | 3imtr4i 292 | 1 ⊢ (dom 𝐴 = ran 𝐵 → ran (𝐴 ∘ 𝐵) = ran 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ◡ccnv 5671 dom cdm 5672 ran crn 5673 ∘ ccom 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 |
This theorem is referenced by: dfdm2 6279 algextdeglem4 33324 |
Copyright terms: Public domain | W3C validator |