![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reseq1 | Structured version Visualization version GIF version |
Description: Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.) |
Ref | Expression |
---|---|
reseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 4201 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∩ (𝐶 × V)) = (𝐵 ∩ (𝐶 × V))) | |
2 | df-res 5684 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
3 | df-res 5684 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
4 | 1, 2, 3 | 3eqtr4g 2792 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 Vcvv 3469 ∩ cin 3943 × cxp 5670 ↾ cres 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-in 3951 df-res 5684 |
This theorem is referenced by: reseq1i 5975 reseq1d 5978 imaeq1 6052 fvtresfn 7001 eqfnun 7040 frrlem1 8285 frrlem13 8297 wfrlem1OLD 8322 wfrlem3OLDa 8325 wfrlem15OLD 8337 tfrlem12 8403 pmresg 8880 resixpfo 8946 mapunen 9162 fseqenlem1 10039 axdc3lem2 10466 axdc3lem4 10468 axdc 10536 hashf1lem1 14439 hashf1lem1OLD 14440 lo1eq 15536 rlimeq 15537 symgfixfo 19385 lspextmo 20930 evlseu 22016 mdetunilem3 22503 mdetunilem4 22504 mdetunilem9 22509 lmbr 23149 ptuncnv 23698 iscau 25191 plyexmo 26235 relogf1o 26487 nosupprefixmo 27620 noinfprefixmo 27621 nosupcbv 27622 nosupno 27623 nosupdm 27624 nosupfv 27626 nosupres 27627 nosupbnd1lem1 27628 nosupbnd1lem3 27630 nosupbnd1lem5 27632 nosupbnd2 27636 noinfcbv 27637 noinfno 27638 noinfdm 27639 noinffv 27641 noinfres 27642 noinfbnd1lem1 27643 noinfbnd1lem3 27645 noinfbnd1lem5 27647 noinfbnd2 27651 eulerpartlemt 33927 eulerpartlemgv 33929 eulerpartlemn 33937 eulerpart 33938 bnj1385 34399 bnj66 34427 bnj1234 34580 bnj1326 34593 bnj1463 34622 iscvm 34805 mbfresfi 37074 sdclem2 37150 isdivrngo 37358 evlselvlem 41741 evlselv 41742 mzpcompact2lem 42093 diophrw 42101 eldioph2lem1 42102 eldioph2lem2 42103 eldioph3 42108 diophin 42114 diophrex 42117 rexrabdioph 42136 2rexfrabdioph 42138 3rexfrabdioph 42139 4rexfrabdioph 42140 6rexfrabdioph 42141 7rexfrabdioph 42142 eldioph4b 42153 pwssplit4 42435 dvnprodlem1 45257 dvnprodlem3 45259 ismea 45762 isome 45805 |
Copyright terms: Public domain | W3C validator |