![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prsref | Structured version Visualization version GIF version |
Description: "Less than or equal to" is reflexive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
isprs.b | ⊢ 𝐵 = (Base‘𝐾) |
isprs.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
prsref | ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
2 | 1, 1, 1 | 3jca 1126 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
3 | isprs.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
4 | isprs.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
5 | 3, 4 | prslem 18281 | . . 3 ⊢ ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑋) → 𝑋 ≤ 𝑋))) |
6 | 2, 5 | sylan2 592 | . 2 ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑋) → 𝑋 ≤ 𝑋))) |
7 | 6 | simpld 494 | 1 ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 class class class wbr 5142 ‘cfv 6542 Basecbs 17171 lecple 17231 Proset cproset 18276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-nul 5300 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-iota 6494 df-fv 6550 df-proset 18278 |
This theorem is referenced by: posref 18301 mgccole1 32699 mgccole2 32700 prsdm 33451 prsrn 33452 prsthinc 47983 |
Copyright terms: Public domain | W3C validator |