MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prsref Structured version   Visualization version   GIF version

Theorem prsref 18282
Description: "Less than or equal to" is reflexive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isprs.b 𝐵 = (Base‘𝐾)
isprs.l = (le‘𝐾)
Assertion
Ref Expression
prsref ((𝐾 ∈ Proset ∧ 𝑋𝐵) → 𝑋 𝑋)

Proof of Theorem prsref
StepHypRef Expression
1 id 22 . . . 4 (𝑋𝐵𝑋𝐵)
21, 1, 13jca 1126 . . 3 (𝑋𝐵 → (𝑋𝐵𝑋𝐵𝑋𝐵))
3 isprs.b . . . 4 𝐵 = (Base‘𝐾)
4 isprs.l . . . 4 = (le‘𝐾)
53, 4prslem 18281 . . 3 ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑋𝐵𝑋𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑋𝑋 𝑋) → 𝑋 𝑋)))
62, 5sylan2 592 . 2 ((𝐾 ∈ Proset ∧ 𝑋𝐵) → (𝑋 𝑋 ∧ ((𝑋 𝑋𝑋 𝑋) → 𝑋 𝑋)))
76simpld 494 1 ((𝐾 ∈ Proset ∧ 𝑋𝐵) → 𝑋 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099   class class class wbr 5142  cfv 6542  Basecbs 17171  lecple 17231   Proset cproset 18276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-nul 5300
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-iota 6494  df-fv 6550  df-proset 18278
This theorem is referenced by:  posref  18301  mgccole1  32699  mgccole2  32700  prsdm  33451  prsrn  33452  prsthinc  47983
  Copyright terms: Public domain W3C validator