Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsdm Structured version   Visualization version   GIF version

Theorem prsdm 33451
Description: Domain of the relation of a proset. (Contributed by Thierry Arnoux, 11-Sep-2015.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
prsdm (𝐾 ∈ Proset → dom = 𝐵)

Proof of Theorem prsdm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtNEW.l . . . . 5 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
21dmeqi 5901 . . . 4 dom = dom ((le‘𝐾) ∩ (𝐵 × 𝐵))
32eleq2i 2820 . . 3 (𝑥 ∈ dom 𝑥 ∈ dom ((le‘𝐾) ∩ (𝐵 × 𝐵)))
4 vex 3473 . . . . 5 𝑥 ∈ V
54eldm2 5898 . . . 4 (𝑥 ∈ dom ((le‘𝐾) ∩ (𝐵 × 𝐵)) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
6 ordtNEW.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
7 eqid 2727 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
86, 7prsref 18282 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → 𝑥(le‘𝐾)𝑥)
9 df-br 5143 . . . . . . . . 9 (𝑥(le‘𝐾)𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ (le‘𝐾))
108, 9sylib 217 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ⟨𝑥, 𝑥⟩ ∈ (le‘𝐾))
11 simpr 484 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → 𝑥𝐵)
1211, 11opelxpd 5711 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ⟨𝑥, 𝑥⟩ ∈ (𝐵 × 𝐵))
1310, 12elind 4190 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ⟨𝑥, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
14 opeq2 4870 . . . . . . . . 9 (𝑦 = 𝑥 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑥⟩)
1514eleq1d 2813 . . . . . . . 8 (𝑦 = 𝑥 → (⟨𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) ↔ ⟨𝑥, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵))))
164, 15spcev 3591 . . . . . . 7 (⟨𝑥, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → ∃𝑦𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
1713, 16syl 17 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ∃𝑦𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
1817ex 412 . . . . 5 (𝐾 ∈ Proset → (𝑥𝐵 → ∃𝑦𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵))))
19 elinel2 4192 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵))
20 opelxp1 5714 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → 𝑥𝐵)
2119, 20syl 17 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → 𝑥𝐵)
2221exlimiv 1926 . . . . 5 (∃𝑦𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → 𝑥𝐵)
2318, 22impbid1 224 . . . 4 (𝐾 ∈ Proset → (𝑥𝐵 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵))))
245, 23bitr4id 290 . . 3 (𝐾 ∈ Proset → (𝑥 ∈ dom ((le‘𝐾) ∩ (𝐵 × 𝐵)) ↔ 𝑥𝐵))
253, 24bitrid 283 . 2 (𝐾 ∈ Proset → (𝑥 ∈ dom 𝑥𝐵))
2625eqrdv 2725 1 (𝐾 ∈ Proset → dom = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wex 1774  wcel 2099  cin 3943  cop 4630   class class class wbr 5142   × cxp 5670  dom cdm 5672  cfv 6542  Basecbs 17171  lecple 17231   Proset cproset 18276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-xp 5678  df-dm 5682  df-iota 6494  df-fv 6550  df-proset 18278
This theorem is referenced by:  prsssdm  33454  ordtprsval  33455  ordtprsuni  33456  ordtrestNEW  33458  ordtconnlem1  33461
  Copyright terms: Public domain W3C validator