![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prnzg | Structured version Visualization version GIF version |
Description: A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
prnzg | ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid1g 4765 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) | |
2 | 1 | ne0d 4336 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ≠ wne 2937 ∅c0 4323 {cpr 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-v 3473 df-dif 3950 df-un 3952 df-nul 4324 df-sn 4630 df-pr 4632 |
This theorem is referenced by: preqsnd 4860 0nelop 5498 fr2nr 5656 mreincl 17578 subrngin 20497 subrgin 20534 lssincl 20848 incld 22946 umgrnloopv 28918 upgr1elem 28924 usgrnloopvALT 29013 difelsiga 33752 inelpisys 33773 inidl 37503 coss0 37951 pmapmeet 39246 diameetN 40529 dihmeetlem2N 40772 dihmeetcN 40775 dihmeet 40816 |
Copyright terms: Public domain | W3C validator |