![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prid1g | Structured version Visualization version GIF version |
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
Ref | Expression |
---|---|
prid1g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | orci 864 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵) |
3 | elprg 4646 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴, 𝐵} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵))) | |
4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1534 ∈ wcel 2099 {cpr 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-un 3950 df-sn 4626 df-pr 4628 |
This theorem is referenced by: prid2g 4762 prid1 4763 prnzg 4779 preq1b 4844 prel12g 4861 elpreqprb 4865 prproe 4902 opth1 5472 fr2nr 5651 fpr2g 7218 f1prex 7288 fveqf1o 7307 pw2f1olem 9095 hashprdifel 14384 gcdcllem3 16470 mgm2nsgrplem1 18864 mgm2nsgrplem2 18865 mgm2nsgrplem3 18866 sgrp2nmndlem1 18869 sgrp2rid2 18872 pmtrprfv 19402 pptbas 22905 coseq0negpitopi 26432 uhgr2edg 29015 umgrvad2edg 29020 uspgr2v1e2w 29058 usgr2v1e2w 29059 nbusgredgeu0 29175 nbusgrf1o0 29176 nb3grprlem1 29187 nb3grprlem2 29188 vtxduhgr0nedg 29300 1hegrvtxdg1 29315 1egrvtxdg1 29317 umgr2v2evd2 29335 vdegp1bi 29345 mptprop 32473 altgnsg 32865 cyc3genpmlem 32867 elrspunsn 33140 bj-prmoore 36589 ftc1anclem8 37168 kelac2 42480 pr2el1 42970 pr2eldif1 42975 fourierdlem54 45539 sge0pr 45773 imarnf1pr 46653 paireqne 46842 fmtnoprmfac2lem1 46897 1hegrlfgr 47185 |
Copyright terms: Public domain | W3C validator |