MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem1 Structured version   Visualization version   GIF version

Theorem pgpfac1lem1 20031
Description: Lemma for pgpfac1 20037. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
Assertion
Ref Expression
pgpfac1lem1 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈)
Distinct variable groups:   𝑤,𝐴   𝑤,   𝑤,𝑃   𝑤,𝐺   𝑤,𝑈   𝑤,𝐶   𝑤,𝑆   𝑤,𝑊   𝜑,𝑤   𝑤,𝐾
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤)   𝑂(𝑤)   0 (𝑤)

Proof of Theorem pgpfac1lem1
StepHypRef Expression
1 pgpfac1.ss . . . 4 (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
21adantr 480 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ⊆ 𝑈)
3 pgpfac1.g . . . . . 6 (𝜑𝐺 ∈ Abel)
4 ablgrp 19740 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
5 pgpfac1.b . . . . . . 7 𝐵 = (Base‘𝐺)
65subgacs 19116 . . . . . 6 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
7 acsmre 17632 . . . . . 6 ((SubGrp‘𝐺) ∈ (ACS‘𝐵) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
83, 4, 6, 74syl 19 . . . . 5 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
98adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
10 eldifi 4125 . . . . . 6 (𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)) → 𝐶𝑈)
1110adantl 481 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶𝑈)
1211snssd 4813 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → {𝐶} ⊆ 𝑈)
13 pgpfac1.u . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝐺))
1413adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝑈 ∈ (SubGrp‘𝐺))
15 pgpfac1.k . . . . 5 𝐾 = (mrCls‘(SubGrp‘𝐺))
1615mrcsscl 17600 . . . 4 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ {𝐶} ⊆ 𝑈𝑈 ∈ (SubGrp‘𝐺)) → (𝐾‘{𝐶}) ⊆ 𝑈)
179, 12, 14, 16syl3anc 1369 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐾‘{𝐶}) ⊆ 𝑈)
18 pgpfac1.s . . . . . . 7 𝑆 = (𝐾‘{𝐴})
195subgss 19082 . . . . . . . . . 10 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
2013, 19syl 17 . . . . . . . . 9 (𝜑𝑈𝐵)
21 pgpfac1.au . . . . . . . . 9 (𝜑𝐴𝑈)
2220, 21sseldd 3981 . . . . . . . 8 (𝜑𝐴𝐵)
2315mrcsncl 17592 . . . . . . . 8 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
248, 22, 23syl2anc 583 . . . . . . 7 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
2518, 24eqeltrid 2833 . . . . . 6 (𝜑𝑆 ∈ (SubGrp‘𝐺))
26 pgpfac1.w . . . . . 6 (𝜑𝑊 ∈ (SubGrp‘𝐺))
27 pgpfac1.l . . . . . . 7 = (LSSum‘𝐺)
2827lsmsubg2 19814 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
293, 25, 26, 28syl3anc 1369 . . . . 5 (𝜑 → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
3029adantr 480 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
3120sselda 3980 . . . . . 6 ((𝜑𝐶𝑈) → 𝐶𝐵)
3210, 31sylan2 592 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶𝐵)
3315mrcsncl 17592 . . . . 5 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐶𝐵) → (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺))
349, 32, 33syl2anc 583 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺))
3527lsmlub 19619 . . . 4 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (((𝑆 𝑊) ⊆ 𝑈 ∧ (𝐾‘{𝐶}) ⊆ 𝑈) ↔ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈))
3630, 34, 14, 35syl3anc 1369 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (((𝑆 𝑊) ⊆ 𝑈 ∧ (𝐾‘{𝐶}) ⊆ 𝑈) ↔ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈))
372, 17, 36mpbi2and 711 . 2 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈)
3827lsmub1 19612 . . . . . 6 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
3930, 34, 38syl2anc 583 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
4027lsmub2 19613 . . . . . . 7 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) → (𝐾‘{𝐶}) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
4130, 34, 40syl2anc 583 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐾‘{𝐶}) ⊆ ((𝑆 𝑊) (𝐾‘{𝐶})))
4232snssd 4813 . . . . . . . 8 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → {𝐶} ⊆ 𝐵)
439, 15, 42mrcssidd 17605 . . . . . . 7 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → {𝐶} ⊆ (𝐾‘{𝐶}))
44 snssg 4788 . . . . . . . 8 (𝐶𝐵 → (𝐶 ∈ (𝐾‘{𝐶}) ↔ {𝐶} ⊆ (𝐾‘{𝐶})))
4532, 44syl 17 . . . . . . 7 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝐶 ∈ (𝐾‘{𝐶}) ↔ {𝐶} ⊆ (𝐾‘{𝐶})))
4643, 45mpbird 257 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶 ∈ (𝐾‘{𝐶}))
4741, 46sseldd 3981 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐶 ∈ ((𝑆 𝑊) (𝐾‘{𝐶})))
48 eldifn 4126 . . . . . 6 (𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)) → ¬ 𝐶 ∈ (𝑆 𝑊))
4948adantl 481 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ¬ 𝐶 ∈ (𝑆 𝑊))
5039, 47, 49ssnelpssd 4110 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶})))
5127lsmub1 19612 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → 𝑆 ⊆ (𝑆 𝑊))
5225, 26, 51syl2anc 583 . . . . . . . 8 (𝜑𝑆 ⊆ (𝑆 𝑊))
5322snssd 4813 . . . . . . . . . . 11 (𝜑 → {𝐴} ⊆ 𝐵)
548, 15, 53mrcssidd 17605 . . . . . . . . . 10 (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴}))
5554, 18sseqtrrdi 4031 . . . . . . . . 9 (𝜑 → {𝐴} ⊆ 𝑆)
56 snssg 4788 . . . . . . . . . 10 (𝐴𝑈 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
5721, 56syl 17 . . . . . . . . 9 (𝜑 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
5855, 57mpbird 257 . . . . . . . 8 (𝜑𝐴𝑆)
5952, 58sseldd 3981 . . . . . . 7 (𝜑𝐴 ∈ (𝑆 𝑊))
6059adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐴 ∈ (𝑆 𝑊))
6139, 60sseldd 3981 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶})))
62 psseq1 4085 . . . . . . . 8 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (𝑤𝑈 ↔ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈))
63 eleq2 2818 . . . . . . . 8 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (𝐴𝑤𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶}))))
6462, 63anbi12d 631 . . . . . . 7 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → ((𝑤𝑈𝐴𝑤) ↔ (((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶})))))
65 psseq2 4086 . . . . . . . 8 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → ((𝑆 𝑊) ⊊ 𝑤 ↔ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
6665notbid 318 . . . . . . 7 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (¬ (𝑆 𝑊) ⊊ 𝑤 ↔ ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
6764, 66imbi12d 344 . . . . . 6 (𝑤 = ((𝑆 𝑊) (𝐾‘{𝐶})) → (((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤) ↔ ((((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶}))) → ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶})))))
68 pgpfac1.2 . . . . . . 7 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
6968adantr 480 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
703adantr 480 . . . . . . 7 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → 𝐺 ∈ Abel)
7127lsmsubg2 19814 . . . . . . 7 ((𝐺 ∈ Abel ∧ (𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ (𝐾‘{𝐶}) ∈ (SubGrp‘𝐺)) → ((𝑆 𝑊) (𝐾‘{𝐶})) ∈ (SubGrp‘𝐺))
7270, 30, 34, 71syl3anc 1369 . . . . . 6 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) ∈ (SubGrp‘𝐺))
7367, 69, 72rspcdva 3610 . . . . 5 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈𝐴 ∈ ((𝑆 𝑊) (𝐾‘{𝐶}))) → ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
7461, 73mpan2d 693 . . . 4 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈 → ¬ (𝑆 𝑊) ⊊ ((𝑆 𝑊) (𝐾‘{𝐶}))))
7550, 74mt2d 136 . . 3 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ¬ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈)
76 npss 4108 . . 3 (¬ ((𝑆 𝑊) (𝐾‘{𝐶})) ⊊ 𝑈 ↔ (((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈 → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈))
7775, 76sylib 217 . 2 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → (((𝑆 𝑊) (𝐾‘{𝐶})) ⊆ 𝑈 → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈))
7837, 77mpd 15 1 ((𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{𝐶})) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3058  cdif 3944  cin 3946  wss 3947  wpss 3948  {csn 4629   class class class wbr 5148  cfv 6548  (class class class)co 7420  Fincfn 8964  Basecbs 17180  0gc0g 17421  Moorecmre 17562  mrClscmrc 17563  ACScacs 17565  Grpcgrp 18890  SubGrpcsubg 19075  odcod 19479  gExcgex 19480   pGrp cpgp 19481  LSSumclsm 19589  Abelcabl 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-0g 17423  df-mre 17566  df-mrc 17567  df-acs 17569  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-submnd 18741  df-grp 18893  df-minusg 18894  df-subg 19078  df-cntz 19268  df-lsm 19591  df-cmn 19737  df-abl 19738
This theorem is referenced by:  pgpfac1lem2  20032  pgpfac1lem3  20034
  Copyright terms: Public domain W3C validator