![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mt2d | Structured version Visualization version GIF version |
Description: Modus tollens deduction. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
mt2d.1 | ⊢ (𝜑 → 𝜒) |
mt2d.2 | ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) |
Ref | Expression |
---|---|
mt2d | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt2d.1 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | mt2d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ¬ 𝜒)) | |
3 | 2 | con2d 134 | . 2 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt2i 137 nsyl3 138 tz7.44-3 8422 sdomdomtr 9128 domsdomtr 9130 infdif 10226 ackbij1b 10256 isf32lem5 10374 alephreg 10599 cfpwsdom 10601 inar1 10792 tskcard 10798 npomex 11013 recnz 12661 rpnnen1lem5 12989 fznuz 13609 uznfz 13610 seqcoll2 14452 ramub1lem1 16988 pgpfac1lem1 20024 lsppratlem6 21033 nconnsubb 23320 iunconnlem 23324 clsconn 23327 xkohaus 23550 reconnlem1 24735 ivthlem2 25374 perfectlem1 27155 lgseisenlem1 27301 ex-natded5.8-2 30217 oddpwdc 33964 erdszelem9 34799 relowlpssretop 36833 sucneqond 36834 heiborlem8 37280 lcvntr 38487 ncvr1 38733 llnneat 38976 2atnelpln 39006 lplnneat 39007 lplnnelln 39008 3atnelvolN 39048 lvolneatN 39050 lvolnelln 39051 lvolnelpln 39052 lplncvrlvol 39078 4atexlemntlpq 39530 cdleme0nex 39752 nlimsuc 42843 |
Copyright terms: Public domain | W3C validator |