![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppcbas | Structured version Visualization version GIF version |
Description: Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof shortened by AV, 18-Oct-2024.) |
Ref | Expression |
---|---|
oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
oppcbas.2 | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
oppcbas | ⊢ 𝐵 = (Base‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcbas.2 | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
2 | baseid 17183 | . . . . . 6 ⊢ Base = Slot (Base‘ndx) | |
3 | slotsbhcdif 17396 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
4 | 3 | simp1i 1137 | . . . . . 6 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
5 | 2, 4 | setsnid 17178 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉)) |
6 | 3 | simp2i 1138 | . . . . . 6 ⊢ (Base‘ndx) ≠ (comp‘ndx) |
7 | 2, 6 | setsnid 17178 | . . . . 5 ⊢ (Base‘(𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉)) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
8 | 5, 7 | eqtri 2756 | . . . 4 ⊢ (Base‘𝐶) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
9 | eqid 2728 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
10 | eqid 2728 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
11 | eqid 2728 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
12 | oppcbas.1 | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
13 | 9, 10, 11, 12 | oppcval 17693 | . . . . 5 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
14 | 13 | fveq2d 6901 | . . . 4 ⊢ (𝐶 ∈ V → (Base‘𝑂) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉))) |
15 | 8, 14 | eqtr4id 2787 | . . 3 ⊢ (𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
16 | base0 17185 | . . . . 5 ⊢ ∅ = (Base‘∅) | |
17 | 16 | eqcomi 2737 | . . . 4 ⊢ (Base‘∅) = ∅ |
18 | 17, 12 | fveqprc 17160 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
19 | 15, 18 | pm2.61i 182 | . 2 ⊢ (Base‘𝐶) = (Base‘𝑂) |
20 | 1, 19 | eqtri 2756 | 1 ⊢ 𝐵 = (Base‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ≠ wne 2937 Vcvv 3471 ∅c0 4323 〈cop 4635 × cxp 5676 ‘cfv 6548 (class class class)co 7420 ∈ cmpo 7422 1st c1st 7991 2nd c2nd 7992 tpos ctpos 8231 sSet csts 17132 ndxcnx 17162 Basecbs 17180 Hom chom 17244 compcco 17245 oppCatcoppc 17691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-hom 17257 df-cco 17258 df-oppc 17692 |
This theorem is referenced by: oppccatid 17701 oppchomf 17702 2oppcbas 17705 2oppccomf 17707 oppccomfpropd 17709 isepi 17723 epii 17726 oppcsect 17761 oppcsect2 17762 oppcinv 17763 oppciso 17764 sectepi 17767 episect 17768 funcoppc 17861 fulloppc 17911 fthoppc 17912 fthepi 17917 dfinito2 17992 dftermo2 17993 hofcl 18251 yon11 18256 yon12 18257 yon2 18258 oyon1cl 18263 yonedalem21 18265 yonedalem3a 18266 yonedalem4c 18269 yonedalem22 18270 yonedalem3b 18271 yonedalem3 18272 yonedainv 18273 yonffthlem 18274 oppcthin 48045 |
Copyright terms: Public domain | W3C validator |