![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvz | Structured version Visualization version GIF version |
Description: The norm of a vector is zero iff the vector is zero. First part of Problem 2 of [Kreyszig] p. 64. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvz.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvz.5 | ⊢ 𝑍 = (0vec‘𝑈) |
nvz.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvz | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 ↔ 𝐴 = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvz.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | eqid 2727 | . . . . . 6 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
3 | eqid 2727 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
4 | nvz.5 | . . . . . 6 ⊢ 𝑍 = (0vec‘𝑈) | |
5 | nvz.6 | . . . . . 6 ⊢ 𝑁 = (normCV‘𝑈) | |
6 | 1, 2, 3, 4, 5 | nvi 30411 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (〈( +𝑣 ‘𝑈), ( ·𝑠OLD ‘𝑈)〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
7 | 6 | simp3d 1142 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
8 | simp1 1134 | . . . . 5 ⊢ ((((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ((𝑁‘𝑥) = 0 → 𝑥 = 𝑍)) | |
9 | 8 | ralimi 3078 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦( ·𝑠OLD ‘𝑈)𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ∀𝑥 ∈ 𝑋 ((𝑁‘𝑥) = 0 → 𝑥 = 𝑍)) |
10 | fveqeq2 6900 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑁‘𝑥) = 0 ↔ (𝑁‘𝐴) = 0)) | |
11 | eqeq1 2731 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑍 ↔ 𝐴 = 𝑍)) | |
12 | 10, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝐴 → (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ↔ ((𝑁‘𝐴) = 0 → 𝐴 = 𝑍))) |
13 | 12 | rspccv 3604 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) → (𝐴 ∈ 𝑋 → ((𝑁‘𝐴) = 0 → 𝐴 = 𝑍))) |
14 | 7, 9, 13 | 3syl 18 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝐴 ∈ 𝑋 → ((𝑁‘𝐴) = 0 → 𝐴 = 𝑍))) |
15 | 14 | imp 406 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 → 𝐴 = 𝑍)) |
16 | fveq2 6891 | . . . . 5 ⊢ (𝐴 = 𝑍 → (𝑁‘𝐴) = (𝑁‘𝑍)) | |
17 | 4, 5 | nvz0 30465 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (𝑁‘𝑍) = 0) |
18 | 16, 17 | sylan9eqr 2789 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 = 𝑍) → (𝑁‘𝐴) = 0) |
19 | 18 | ex 412 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝐴 = 𝑍 → (𝑁‘𝐴) = 0)) |
20 | 19 | adantr 480 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴 = 𝑍 → (𝑁‘𝐴) = 0)) |
21 | 15, 20 | impbid 211 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) = 0 ↔ 𝐴 = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∀wral 3056 〈cop 4630 class class class wbr 5142 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ℂcc 11128 ℝcr 11129 0cc0 11130 + caddc 11133 · cmul 11135 ≤ cle 11271 abscabs 15205 CVecOLDcvc 30355 NrmCVeccnv 30381 +𝑣 cpv 30382 BaseSetcba 30383 ·𝑠OLD cns 30384 0veccn0v 30385 normCVcnmcv 30387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-sup 9457 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-n0 12495 df-z 12581 df-uz 12845 df-rp 12999 df-seq 13991 df-exp 14051 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-grpo 30290 df-gid 30291 df-ginv 30292 df-ablo 30342 df-vc 30356 df-nv 30389 df-va 30392 df-ba 30393 df-sm 30394 df-0v 30395 df-nmcv 30397 |
This theorem is referenced by: nvgt0 30471 nv1 30472 imsmetlem 30487 ipz 30516 nmlno0lem 30590 nmblolbii 30596 blocnilem 30601 siii 30650 hlipgt0 30711 |
Copyright terms: Public domain | W3C validator |