![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mre1cl | Structured version Visualization version GIF version |
Description: In any Moore collection the base set is closed. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
mre1cl | ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismre 17570 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶))) | |
2 | 1 | simp2bi 1144 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 ⊆ wss 3947 ∅c0 4323 𝒫 cpw 4603 ∩ cint 4949 ‘cfv 6548 Moorecmre 17562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-mre 17566 |
This theorem is referenced by: mrerintcl 17577 mreriincl 17578 mreuni 17580 mremre 17584 mrcflem 17586 mrcval 17590 mrccl 17591 mrcun 17602 mrelatglb0 18553 mreclatBAD 18555 mretopd 23009 mreclat 48008 |
Copyright terms: Public domain | W3C validator |