MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mre1cl Structured version   Visualization version   GIF version

Theorem mre1cl 17574
Description: In any Moore collection the base set is closed. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mre1cl (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)

Proof of Theorem mre1cl
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ismre 17570 . 2 (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
21simp2bi 1144 1 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  wne 2937  wral 3058  wss 3947  c0 4323  𝒫 cpw 4603   cint 4949  cfv 6548  Moorecmre 17562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6500  df-fun 6550  df-fv 6556  df-mre 17566
This theorem is referenced by:  mrerintcl  17577  mreriincl  17578  mreuni  17580  mremre  17584  mrcflem  17586  mrcval  17590  mrccl  17591  mrcun  17602  mrelatglb0  18553  mreclatBAD  18555  mretopd  23009  mreclat  48008
  Copyright terms: Public domain W3C validator