![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcflem | Structured version Visualization version GIF version |
Description: The domain and codomain of the function expression for Moore closures. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrcflem | ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠}):𝒫 𝑋⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝐶 ∈ (Moore‘𝑋)) | |
2 | ssrab2 4075 | . . . 4 ⊢ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ⊆ 𝐶 | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ⊆ 𝐶) |
4 | sseq2 4006 | . . . . 5 ⊢ (𝑠 = 𝑋 → (𝑥 ⊆ 𝑠 ↔ 𝑥 ⊆ 𝑋)) | |
5 | mre1cl 17574 | . . . . . 6 ⊢ (𝐶 ∈ (Moore‘𝑋) → 𝑋 ∈ 𝐶) | |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑋 ∈ 𝐶) |
7 | elpwi 4610 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥 ⊆ 𝑋) |
9 | 4, 6, 8 | elrabd 3684 | . . . 4 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑋 ∈ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠}) |
10 | 9 | ne0d 4336 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ≠ ∅) |
11 | mreintcl 17575 | . . 3 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ⊆ 𝐶 ∧ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ≠ ∅) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ∈ 𝐶) | |
12 | 1, 3, 10, 11 | syl3anc 1369 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠} ∈ 𝐶) |
13 | 12 | fmpttd 7125 | 1 ⊢ (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝑋 ↦ ∩ {𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠}):𝒫 𝑋⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ≠ wne 2937 {crab 3429 ⊆ wss 3947 ∅c0 4323 𝒫 cpw 4603 ∩ cint 4949 ↦ cmpt 5231 ⟶wf 6544 ‘cfv 6548 Moorecmre 17562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-mre 17566 |
This theorem is referenced by: fnmrc 17587 mrcfval 17588 mrcf 17589 |
Copyright terms: Public domain | W3C validator |