![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpteq12 | Structured version Visualization version GIF version |
Description: An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq12 | ⊢ ((𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1906 | . 2 ⊢ (𝐴 = 𝐶 → ∀𝑥 𝐴 = 𝐶) | |
2 | mpteq12f 5236 | . 2 ⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | |
3 | 1, 2 | sylan 579 | 1 ⊢ ((𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1532 = wceq 1534 ∀wral 3058 ↦ cmpt 5231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-opab 5211 df-mpt 5232 |
This theorem is referenced by: mpteq1OLD 5242 mpteqb 7024 fmptcof 7139 mapxpen 9168 prodeq2w 15889 prdsdsval2 17466 prdsdsval3 17467 ablfac2 20046 mdetunilem9 22535 mdetmul 22538 xkocnv 23731 voliun 25496 itgeq1f 25714 itgeq2 25720 iblcnlem 25731 bddiblnc 25784 esumeq2 33655 esumcvg 33705 dvtan 37143 |
Copyright terms: Public domain | W3C validator |