![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpteq1 | Structured version Visualization version GIF version |
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
Ref | Expression |
---|---|
mpteq1 | ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | eqidd 2729 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
3 | 1, 2 | mpteq12dv 5233 | 1 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ↦ cmpt 5225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-opab 5205 df-mpt 5226 |
This theorem is referenced by: mpteq1d 5237 mpteq1iOLD 5239 tposf12 8250 oarec 8576 wunex2 10755 wuncval2 10764 vrmdfval 18801 pmtrfval 19398 sylow1 19551 sylow2b 19571 sylow3lem5 19579 sylow3 19581 gsumconst 19882 gsum2dlem2 19919 gsumfsum 21360 mvrfval 21916 mplcoe1 21968 mplcoe5 21971 evlsval 22025 coe1fzgsumd 22216 evls1fval 22231 evl1gsumd 22269 mavmul0 22447 madugsum 22538 cramer0 22585 cnmpt1t 23562 cnmpt2t 23570 fmval 23840 symgtgp 24003 prdstgpd 24022 gsumvsca1 32927 gsumvsca2 32928 qusima 33112 qusrn 33113 nsgmgc 33116 nsgqusf1olem2 33118 indv 33625 gsumesum 33672 esumlub 33673 esum2d 33706 sitg0 33960 matunitlindflem1 37083 matunitlindf 37085 sdclem2 37209 evl1gprodd 41582 idomnnzgmulnz 41598 deg1gprod 41606 fsovcnvlem 43437 ntrneibex 43497 stoweidlem9 45391 sge0sn 45761 sge0iunmptlemfi 45795 sge0isum 45809 ovn02 45950 |
Copyright terms: Public domain | W3C validator |