![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mgpplusg | Structured version Visualization version GIF version |
Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) |
Ref | Expression |
---|---|
mgpval.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpval.2 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
mgpplusg | ⊢ · = (+g‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpval.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
2 | 1 | fvexi 6906 | . . . 4 ⊢ · ∈ V |
3 | plusgid 17254 | . . . . 5 ⊢ +g = Slot (+g‘ndx) | |
4 | 3 | setsid 17171 | . . . 4 ⊢ ((𝑅 ∈ V ∧ · ∈ V) → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
5 | 2, 4 | mpan2 690 | . . 3 ⊢ (𝑅 ∈ V → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
6 | mgpval.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
7 | 6, 1 | mgpval 20071 | . . . 4 ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉) |
8 | 7 | fveq2i 6895 | . . 3 ⊢ (+g‘𝑀) = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉)) |
9 | 5, 8 | eqtr4di 2786 | . 2 ⊢ (𝑅 ∈ V → · = (+g‘𝑀)) |
10 | 3 | str0 17152 | . . 3 ⊢ ∅ = (+g‘∅) |
11 | fvprc 6884 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑅) = ∅) | |
12 | 1, 11 | eqtrid 2780 | . . 3 ⊢ (¬ 𝑅 ∈ V → · = ∅) |
13 | fvprc 6884 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
14 | 6, 13 | eqtrid 2780 | . . . 4 ⊢ (¬ 𝑅 ∈ V → 𝑀 = ∅) |
15 | 14 | fveq2d 6896 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑀) = (+g‘∅)) |
16 | 10, 12, 15 | 3eqtr4a 2794 | . 2 ⊢ (¬ 𝑅 ∈ V → · = (+g‘𝑀)) |
17 | 9, 16 | pm2.61i 182 | 1 ⊢ · = (+g‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ∅c0 4319 〈cop 4631 ‘cfv 6543 (class class class)co 7415 sSet csts 17126 ndxcnx 17156 +gcplusg 17227 .rcmulr 17228 mulGrpcmgp 20068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-1cn 11191 ax-addcl 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-nn 12238 df-2 12300 df-sets 17127 df-slot 17145 df-ndx 17157 df-plusg 17240 df-mgp 20069 |
This theorem is referenced by: prdsmgp 20085 rngass 20093 rngcl 20098 isrngd 20107 rngpropd 20108 dfur2 20118 srgcl 20127 srgass 20128 srgideu 20129 srgidmlem 20135 issrgid 20138 srg1zr 20149 srgpcomp 20152 srgpcompp 20153 srgbinomlem4 20163 srgbinomlem 20164 csrgbinom 20166 ringcl 20184 crngcom 20185 iscrng2 20186 ringass 20187 ringideu 20188 ringidmlem 20198 isringid 20201 ringidss 20207 isringrng 20217 ringpropd 20218 crngpropd 20219 isringd 20221 iscrngd 20222 ring1 20240 gsummgp0 20248 pwspjmhmmgpd 20258 xpsring1d 20263 oppr1 20283 unitgrp 20316 unitlinv 20326 unitrinv 20327 rdivmuldivd 20346 rngidpropd 20348 invrpropd 20351 isrnghmmul 20375 dfrhm2 20407 rhmmul 20419 isrhm2d 20420 rhmunitinv 20444 rhmimasubrnglem 20496 rhmimasubrng 20497 cntzsubrng 20498 subrgugrp 20524 issubrg3 20533 cntzsubr 20539 rhmpropd 20542 isdrng2 20632 drngmcl 20635 drngid2 20639 isdrngd 20651 isdrngdOLD 20653 cntzsdrg 20684 primefld 20687 rlmscaf 21094 rnglidlmmgm 21134 rnglidlmsgrp 21135 rng2idl1cntr 21189 isdomn3 21242 xrsmcmn 21313 cnfldexp 21326 cnmsubglem 21357 expmhm 21363 nn0srg 21364 rge0srg 21365 expghm 21395 psgnghm 21506 psgnco 21509 evpmodpmf1o 21522 sraassab 21795 sraassaOLD 21797 assamulgscmlem2 21827 psrcrng 21909 mplcoe3 21970 mplcoe5lem 21971 mplcoe5 21972 mplcoe2 21973 mplbas2 21974 evlslem1 22022 mpfind 22047 mhppwdeg 22068 coe1tm 22186 ply1coe 22211 ringvcl 22294 mamuvs2 22300 mat1mhm 22380 scmatmhm 22430 mdetdiaglem 22494 mdetrlin 22498 mdetrsca 22499 mdetralt 22504 mdetunilem7 22514 mdetuni0 22517 m2detleib 22527 invrvald 22572 mat2pmatmhm 22629 pm2mpmhm 22716 chfacfpmmulgsum2 22761 cpmadugsumlemB 22770 cnmpt1mulr 24080 cnmpt2mulr 24081 reefgim 26381 efabl 26478 efsubm 26479 amgm 26917 wilthlem2 26995 wilthlem3 26996 dchrelbas3 27165 dchrzrhmul 27173 dchrmulcl 27176 dchrn0 27177 dchrinvcl 27180 dchrptlem2 27192 dchrsum2 27195 sum2dchr 27201 lgseisenlem3 27304 lgseisenlem4 27305 urpropd 32934 frobrhm 32936 ringinvval 32938 dvrcan5 32939 rrgsubm 32948 erler 32974 rlocaddval 32977 rlocmulval 32978 rloccring 32979 zringfrac 32991 elringlsm 33097 lsmsnpridl 33102 cringm4 33157 mxidlprm 33178 evls1fldgencl 33349 iistmd 33498 xrge0iifmhm 33535 xrge0pluscn 33536 pl1cn 33551 aks6d1c1p4 41577 evl1gprodd 41583 idomnnzpownz 41598 idomnnzgmulnz 41599 ringexp0nn 41600 aks6d1c5lem3 41603 aks6d1c5lem2 41604 deg1gprod 41607 deg1pow 41608 selvvvval 41809 evlselv 41811 mhphf 41821 mon1psubm 42618 deg1mhm 42619 amgm2d 43619 amgm3d 43620 amgm4d 43621 2zrngmmgm 47305 2zrngmsgrp 47306 2zrngnring 47311 cznrng 47314 cznnring 47315 mgpsumunsn 47416 invginvrid 47422 amgmlemALT 48227 amgmw2d 48228 |
Copyright terms: Public domain | W3C validator |