MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscrngd Structured version   Visualization version   GIF version

Theorem iscrngd 20228
Description: Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
isringd.b (𝜑𝐵 = (Base‘𝑅))
isringd.p (𝜑+ = (+g𝑅))
isringd.t (𝜑· = (.r𝑅))
isringd.g (𝜑𝑅 ∈ Grp)
isringd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
isringd.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
isringd.d ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
isringd.e ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
isringd.u (𝜑1𝐵)
isringd.i ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
isringd.h ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
iscrngd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
Assertion
Ref Expression
iscrngd (𝜑𝑅 ∈ CRing)
Distinct variable groups:   𝑥, 1   𝑥,𝑦,𝑧,𝐵   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧)   · (𝑥,𝑦,𝑧)   1 (𝑦,𝑧)

Proof of Theorem iscrngd
StepHypRef Expression
1 isringd.b . . 3 (𝜑𝐵 = (Base‘𝑅))
2 isringd.p . . 3 (𝜑+ = (+g𝑅))
3 isringd.t . . 3 (𝜑· = (.r𝑅))
4 isringd.g . . 3 (𝜑𝑅 ∈ Grp)
5 isringd.c . . 3 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)
6 isringd.a . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
7 isringd.d . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
8 isringd.e . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
9 isringd.u . . 3 (𝜑1𝐵)
10 isringd.i . . 3 ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)
11 isringd.h . . 3 ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11isringd 20227 . 2 (𝜑𝑅 ∈ Ring)
13 eqid 2728 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
14 eqid 2728 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
1513, 14mgpbas 20080 . . . 4 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
161, 15eqtrdi 2784 . . 3 (𝜑𝐵 = (Base‘(mulGrp‘𝑅)))
17 eqid 2728 . . . . 5 (.r𝑅) = (.r𝑅)
1813, 17mgpplusg 20078 . . . 4 (.r𝑅) = (+g‘(mulGrp‘𝑅))
193, 18eqtrdi 2784 . . 3 (𝜑· = (+g‘(mulGrp‘𝑅)))
2016, 19, 5, 6, 9, 10, 11ismndd 18716 . . 3 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
21 iscrngd.c . . 3 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
2216, 19, 20, 21iscmnd 19749 . 2 (𝜑 → (mulGrp‘𝑅) ∈ CMnd)
2313iscrng 20180 . 2 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd))
2412, 22, 23sylanbrc 582 1 (𝜑𝑅 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  cfv 6548  (class class class)co 7420  Basecbs 17180  +gcplusg 17233  .rcmulr 17234  Grpcgrp 18890  CMndccmn 19735  mulGrpcmgp 20074  Ringcrg 20173  CRingccrg 20174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-plusg 17246  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-cmn 19737  df-mgp 20075  df-ring 20175  df-cring 20176
This theorem is referenced by:  cncrng  21316  cncrngOLD  21317  rloccring  32997
  Copyright terms: Public domain W3C validator