![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscrngd | Structured version Visualization version GIF version |
Description: Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
isringd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
isringd.p | ⊢ (𝜑 → + = (+g‘𝑅)) |
isringd.t | ⊢ (𝜑 → · = (.r‘𝑅)) |
isringd.g | ⊢ (𝜑 → 𝑅 ∈ Grp) |
isringd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) |
isringd.a | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
isringd.d | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
isringd.e | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
isringd.u | ⊢ (𝜑 → 1 ∈ 𝐵) |
isringd.i | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) |
isringd.h | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) |
iscrngd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) |
Ref | Expression |
---|---|
iscrngd | ⊢ (𝜑 → 𝑅 ∈ CRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isringd.b | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
2 | isringd.p | . . 3 ⊢ (𝜑 → + = (+g‘𝑅)) | |
3 | isringd.t | . . 3 ⊢ (𝜑 → · = (.r‘𝑅)) | |
4 | isringd.g | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
5 | isringd.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) | |
6 | isringd.a | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) | |
7 | isringd.d | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | |
8 | isringd.e | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | |
9 | isringd.u | . . 3 ⊢ (𝜑 → 1 ∈ 𝐵) | |
10 | isringd.i | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) | |
11 | isringd.h | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | isringd 20227 | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) |
13 | eqid 2728 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
14 | eqid 2728 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
15 | 13, 14 | mgpbas 20080 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(mulGrp‘𝑅)) |
16 | 1, 15 | eqtrdi 2784 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝑅))) |
17 | eqid 2728 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
18 | 13, 17 | mgpplusg 20078 | . . . 4 ⊢ (.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
19 | 3, 18 | eqtrdi 2784 | . . 3 ⊢ (𝜑 → · = (+g‘(mulGrp‘𝑅))) |
20 | 16, 19, 5, 6, 9, 10, 11 | ismndd 18716 | . . 3 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
21 | iscrngd.c | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) | |
22 | 16, 19, 20, 21 | iscmnd 19749 | . 2 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ CMnd) |
23 | 13 | iscrng 20180 | . 2 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd)) |
24 | 12, 22, 23 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝑅 ∈ CRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 +gcplusg 17233 .rcmulr 17234 Grpcgrp 18890 CMndccmn 19735 mulGrpcmgp 20074 Ringcrg 20173 CRingccrg 20174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-plusg 17246 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-cmn 19737 df-mgp 20075 df-ring 20175 df-cring 20176 |
This theorem is referenced by: cncrng 21316 cncrngOLD 21317 rloccring 32997 |
Copyright terms: Public domain | W3C validator |