![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mdet1 | Structured version Visualization version GIF version |
Description: The determinant of the identity matrix is 1, i.e. the determinant function is normalized, see also definition in [Lang] p. 513. (Contributed by SO, 10-Jul-2018.) (Proof shortened by AV, 25-Nov-2019.) |
Ref | Expression |
---|---|
mdet1.d | ⊢ 𝐷 = (𝑁 maDet 𝑅) |
mdet1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mdet1.n | ⊢ 𝐼 = (1r‘𝐴) |
mdet1.o | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
mdet1 | ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝐷‘𝐼) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑅 ∈ CRing ∧ 𝑁 ∈ Fin)) | |
2 | crngring 20190 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
3 | 2 | anim1ci 614 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
4 | mdet1.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
5 | 4 | matring 22363 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
6 | eqid 2727 | . . . . . 6 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
7 | mdet1.n | . . . . . 6 ⊢ 𝐼 = (1r‘𝐴) | |
8 | 6, 7 | ringidcl 20207 | . . . . 5 ⊢ (𝐴 ∈ Ring → 𝐼 ∈ (Base‘𝐴)) |
9 | 3, 5, 8 | 3syl 18 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝐼 ∈ (Base‘𝐴)) |
10 | eqid 2727 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
11 | mdet1.o | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
12 | 10, 11 | ringidcl 20207 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
13 | 2, 12 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ CRing → 1 ∈ (Base‘𝑅)) |
14 | 13 | adantr 479 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 1 ∈ (Base‘𝑅)) |
15 | 1, 9, 14 | jca32 514 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ (Base‘𝐴) ∧ 1 ∈ (Base‘𝑅)))) |
16 | eqid 2727 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
17 | simplr 767 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑁 ∈ Fin) | |
18 | 2 | adantr 479 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → 𝑅 ∈ Ring) |
19 | 18 | adantr 479 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑅 ∈ Ring) |
20 | simprl 769 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) | |
21 | simprr 771 | . . . . 5 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) | |
22 | 4, 11, 16, 17, 19, 20, 21, 7 | mat1ov 22368 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝐼𝑗) = if(𝑖 = 𝑗, 1 , (0g‘𝑅))) |
23 | 22 | ralrimivva 3196 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐼𝑗) = if(𝑖 = 𝑗, 1 , (0g‘𝑅))) |
24 | mdet1.d | . . . 4 ⊢ 𝐷 = (𝑁 maDet 𝑅) | |
25 | eqid 2727 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
26 | eqid 2727 | . . . 4 ⊢ (.g‘(mulGrp‘𝑅)) = (.g‘(mulGrp‘𝑅)) | |
27 | 24, 4, 6, 25, 16, 10, 26 | mdetdiagid 22520 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) ∧ (𝐼 ∈ (Base‘𝐴) ∧ 1 ∈ (Base‘𝑅))) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝐼𝑗) = if(𝑖 = 𝑗, 1 , (0g‘𝑅)) → (𝐷‘𝐼) = ((♯‘𝑁)(.g‘(mulGrp‘𝑅)) 1 ))) |
28 | 15, 23, 27 | sylc 65 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝐷‘𝐼) = ((♯‘𝑁)(.g‘(mulGrp‘𝑅)) 1 )) |
29 | ringsrg 20238 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
30 | 2, 29 | syl 17 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ SRing) |
31 | hashcl 14353 | . . 3 ⊢ (𝑁 ∈ Fin → (♯‘𝑁) ∈ ℕ0) | |
32 | 25, 26, 11 | srg1expzeq1 20170 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ (♯‘𝑁) ∈ ℕ0) → ((♯‘𝑁)(.g‘(mulGrp‘𝑅)) 1 ) = 1 ) |
33 | 30, 31, 32 | syl2an 594 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → ((♯‘𝑁)(.g‘(mulGrp‘𝑅)) 1 ) = 1 ) |
34 | 28, 33 | eqtrd 2767 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin) → (𝐷‘𝐼) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3057 ifcif 4530 ‘cfv 6551 (class class class)co 7424 Fincfn 8968 ℕ0cn0 12508 ♯chash 14327 Basecbs 17185 0gc0g 17426 .gcmg 19028 mulGrpcmgp 20079 1rcur 20126 SRingcsrg 20131 Ringcrg 20178 CRingccrg 20179 Mat cmat 22325 maDet cmdat 22504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-addf 11223 ax-mulf 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-xor 1505 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-ot 4639 df-uni 4911 df-int 4952 df-iun 5000 df-iin 5001 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7689 df-om 7875 df-1st 7997 df-2nd 7998 df-supp 8170 df-tpos 8236 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-2o 8492 df-er 8729 df-map 8851 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9392 df-sup 9471 df-oi 9539 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-xnn0 12581 df-z 12595 df-dec 12714 df-uz 12859 df-rp 13013 df-fz 13523 df-fzo 13666 df-seq 14005 df-exp 14065 df-hash 14328 df-word 14503 df-lsw 14551 df-concat 14559 df-s1 14584 df-substr 14629 df-pfx 14659 df-splice 14738 df-reverse 14747 df-s2 14837 df-struct 17121 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-ress 17215 df-plusg 17251 df-mulr 17252 df-starv 17253 df-sca 17254 df-vsca 17255 df-ip 17256 df-tset 17257 df-ple 17258 df-ds 17260 df-unif 17261 df-hom 17262 df-cco 17263 df-0g 17428 df-gsum 17429 df-prds 17434 df-pws 17436 df-mre 17571 df-mrc 17572 df-acs 17574 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-mhm 18745 df-submnd 18746 df-efmnd 18826 df-grp 18898 df-minusg 18899 df-sbg 18900 df-mulg 19029 df-subg 19083 df-ghm 19173 df-gim 19218 df-cntz 19273 df-oppg 19302 df-symg 19327 df-pmtr 19402 df-psgn 19451 df-cmn 19742 df-abl 19743 df-mgp 20080 df-rng 20098 df-ur 20127 df-srg 20132 df-ring 20180 df-cring 20181 df-oppr 20278 df-dvdsr 20301 df-unit 20302 df-invr 20332 df-dvr 20345 df-rhm 20416 df-subrng 20488 df-subrg 20513 df-drng 20631 df-lmod 20750 df-lss 20821 df-sra 21063 df-rgmod 21064 df-cnfld 21285 df-zring 21378 df-zrh 21434 df-dsmm 21671 df-frlm 21686 df-mamu 22304 df-mat 22326 df-mdet 22505 |
This theorem is referenced by: mdetuni0 22541 matunit 22598 cramerimplem1 22603 matunitlindflem2 37095 |
Copyright terms: Public domain | W3C validator |