![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltdiv23neg | Structured version Visualization version GIF version |
Description: Swap denominator with other side of 'less than', when both are negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ltdiv23neg.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltdiv23neg.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltdiv23neg.3 | ⊢ (𝜑 → 𝐵 < 0) |
ltdiv23neg.4 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltdiv23neg.5 | ⊢ (𝜑 → 𝐶 < 0) |
Ref | Expression |
---|---|
ltdiv23neg | ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltdiv23neg.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltdiv23neg.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | ltdiv23neg.3 | . . . . 5 ⊢ (𝜑 → 𝐵 < 0) | |
4 | 2, 3 | ltned 11374 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 0) |
5 | 1, 2, 4 | redivcld 12066 | . . 3 ⊢ (𝜑 → (𝐴 / 𝐵) ∈ ℝ) |
6 | ltdiv23neg.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
7 | 5, 6, 2, 3 | ltmulneg 44746 | . 2 ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐶 · 𝐵) < ((𝐴 / 𝐵) · 𝐵))) |
8 | recn 11222 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
9 | 1, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
10 | recn 11222 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
11 | 2, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
12 | 9, 11, 4 | divcan1d 12015 | . . 3 ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) |
13 | 12 | breq2d 5154 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐵) < ((𝐴 / 𝐵) · 𝐵) ↔ (𝐶 · 𝐵) < 𝐴)) |
14 | remulcl 11217 | . . . . 5 ⊢ ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 · 𝐵) ∈ ℝ) | |
15 | 6, 2, 14 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐶 · 𝐵) ∈ ℝ) |
16 | ltdiv23neg.5 | . . . . . 6 ⊢ (𝜑 → 𝐶 < 0) | |
17 | 6, 16 | ltned 11374 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 0) |
18 | 6, 17 | rereccld 12065 | . . . 4 ⊢ (𝜑 → (1 / 𝐶) ∈ ℝ) |
19 | 6, 16 | reclt0d 44741 | . . . 4 ⊢ (𝜑 → (1 / 𝐶) < 0) |
20 | 15, 1, 18, 19 | ltmulneg 44746 | . . 3 ⊢ (𝜑 → ((𝐶 · 𝐵) < 𝐴 ↔ (𝐴 · (1 / 𝐶)) < ((𝐶 · 𝐵) · (1 / 𝐶)))) |
21 | recn 11222 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℂ) | |
22 | 6, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
23 | 9, 22, 17 | divrecd 12017 | . . . . 5 ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶))) |
24 | 23 | eqcomd 2733 | . . . 4 ⊢ (𝜑 → (𝐴 · (1 / 𝐶)) = (𝐴 / 𝐶)) |
25 | 22, 11 | mulcld 11258 | . . . . . 6 ⊢ (𝜑 → (𝐶 · 𝐵) ∈ ℂ) |
26 | 25, 22, 17 | divrecd 12017 | . . . . 5 ⊢ (𝜑 → ((𝐶 · 𝐵) / 𝐶) = ((𝐶 · 𝐵) · (1 / 𝐶))) |
27 | divcan3 11922 | . . . . . . 7 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ((𝐶 · 𝐵) / 𝐶) = 𝐵) | |
28 | 27 | 3expb 1118 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐵) / 𝐶) = 𝐵) |
29 | 11, 22, 17, 28 | syl12anc 836 | . . . . 5 ⊢ (𝜑 → ((𝐶 · 𝐵) / 𝐶) = 𝐵) |
30 | 26, 29 | eqtr3d 2769 | . . . 4 ⊢ (𝜑 → ((𝐶 · 𝐵) · (1 / 𝐶)) = 𝐵) |
31 | 24, 30 | breq12d 5155 | . . 3 ⊢ (𝜑 → ((𝐴 · (1 / 𝐶)) < ((𝐶 · 𝐵) · (1 / 𝐶)) ↔ (𝐴 / 𝐶) < 𝐵)) |
32 | 20, 31 | bitrd 279 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐵) < 𝐴 ↔ (𝐴 / 𝐶) < 𝐵)) |
33 | 7, 13, 32 | 3bitrd 305 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 class class class wbr 5142 (class class class)co 7414 ℂcc 11130 ℝcr 11131 0cc0 11132 1c1 11133 · cmul 11137 < clt 11272 / cdiv 11895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-rp 13001 |
This theorem is referenced by: pimrecltneg 46084 |
Copyright terms: Public domain | W3C validator |