![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lply1binom | Structured version Visualization version GIF version |
Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings: (𝑋 + 𝐴)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑(𝑁 − 𝑘)) · (𝑋↑𝑘)). (Contributed by AV, 25-Aug-2019.) |
Ref | Expression |
---|---|
cply1binom.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cply1binom.x | ⊢ 𝑋 = (var1‘𝑅) |
cply1binom.a | ⊢ + = (+g‘𝑃) |
cply1binom.m | ⊢ × = (.r‘𝑃) |
cply1binom.t | ⊢ · = (.g‘𝑃) |
cply1binom.g | ⊢ 𝐺 = (mulGrp‘𝑃) |
cply1binom.e | ⊢ ↑ = (.g‘𝐺) |
cply1binom.b | ⊢ 𝐵 = (Base‘𝑃) |
Ref | Expression |
---|---|
lply1binom | ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → (𝑁 ↑ (𝑋 + 𝐴)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝑋)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 20185 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | cply1binom.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | 2 | ply1ring 22166 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
4 | ringcmn 20218 | . . . . . 6 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ CMnd) | |
5 | 1, 3, 4 | 3syl 18 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CMnd) |
6 | 5 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → 𝑃 ∈ CMnd) |
7 | cply1binom.x | . . . . . . 7 ⊢ 𝑋 = (var1‘𝑅) | |
8 | cply1binom.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑃) | |
9 | 7, 2, 8 | vr1cl 22136 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ 𝐵) |
10 | 1, 9 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑋 ∈ 𝐵) |
11 | 10 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
12 | simp3 1136 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐵) | |
13 | cply1binom.a | . . . . 5 ⊢ + = (+g‘𝑃) | |
14 | 8, 13 | cmncom 19753 | . . . 4 ⊢ ((𝑃 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝑋 + 𝐴) = (𝐴 + 𝑋)) |
15 | 6, 11, 12, 14 | syl3anc 1369 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → (𝑋 + 𝐴) = (𝐴 + 𝑋)) |
16 | 15 | oveq2d 7436 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → (𝑁 ↑ (𝑋 + 𝐴)) = (𝑁 ↑ (𝐴 + 𝑋))) |
17 | 2 | ply1crng 22117 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
18 | 17 | 3ad2ant1 1131 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → 𝑃 ∈ CRing) |
19 | simp2 1135 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → 𝑁 ∈ ℕ0) | |
20 | 8 | eleq2i 2821 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ (Base‘𝑃)) |
21 | 20 | biimpi 215 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (Base‘𝑃)) |
22 | 21 | 3ad2ant3 1133 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ (Base‘𝑃)) |
23 | 10, 8 | eleqtrdi 2839 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑋 ∈ (Base‘𝑃)) |
24 | 23 | 3ad2ant1 1131 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑃)) |
25 | eqid 2728 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
26 | cply1binom.m | . . . 4 ⊢ × = (.r‘𝑃) | |
27 | cply1binom.t | . . . 4 ⊢ · = (.g‘𝑃) | |
28 | cply1binom.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑃) | |
29 | cply1binom.e | . . . 4 ⊢ ↑ = (.g‘𝐺) | |
30 | 25, 26, 27, 13, 28, 29 | crngbinom 20271 | . . 3 ⊢ (((𝑃 ∈ CRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Base‘𝑃) ∧ 𝑋 ∈ (Base‘𝑃))) → (𝑁 ↑ (𝐴 + 𝑋)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝑋)))))) |
31 | 18, 19, 22, 24, 30 | syl22anc 838 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → (𝑁 ↑ (𝐴 + 𝑋)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝑋)))))) |
32 | 16, 31 | eqtrd 2768 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → (𝑁 ↑ (𝑋 + 𝐴)) = (𝑃 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝑋)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ↦ cmpt 5231 ‘cfv 6548 (class class class)co 7420 0cc0 11139 − cmin 11475 ℕ0cn0 12503 ...cfz 13517 Ccbc 14294 Basecbs 17180 +gcplusg 17233 .rcmulr 17234 Σg cgsu 17422 .gcmg 19023 CMndccmn 19735 mulGrpcmgp 20074 Ringcrg 20173 CRingccrg 20174 var1cv1 22095 Poly1cpl1 22096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-ofr 7686 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9387 df-sup 9466 df-oi 9534 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-rp 13008 df-fz 13518 df-fzo 13661 df-seq 14000 df-fac 14266 df-bc 14295 df-hash 14323 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-sca 17249 df-vsca 17250 df-ip 17251 df-tset 17252 df-ple 17253 df-ds 17255 df-hom 17257 df-cco 17258 df-0g 17423 df-gsum 17424 df-prds 17429 df-pws 17431 df-mre 17566 df-mrc 17567 df-acs 17569 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-mhm 18740 df-submnd 18741 df-grp 18893 df-minusg 18894 df-mulg 19024 df-subg 19078 df-ghm 19168 df-cntz 19268 df-cmn 19737 df-abl 19738 df-mgp 20075 df-rng 20093 df-ur 20122 df-srg 20127 df-ring 20175 df-cring 20176 df-subrng 20483 df-subrg 20508 df-psr 21842 df-mvr 21843 df-mpl 21844 df-opsr 21846 df-psr1 22099 df-vr1 22100 df-ply1 22101 |
This theorem is referenced by: lply1binomsc 22230 |
Copyright terms: Public domain | W3C validator |