![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctild | Structured version Visualization version GIF version |
Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctild.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jctild.2 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jctild | ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctild.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
3 | jctild.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: anc2li 555 equvini 2449 2reu1 3887 frpoinsg 6343 ordunidif 6412 isofrlem 7342 dfwe2 7770 orduniorsuc 7827 tfisg 7852 poxp 8127 fnse 8132 ssenen 9169 dffi3 9448 fpwwe2lem12 10659 zmulcl 12635 rpneg 13032 rexuz3 15321 cau3lem 15327 climrlim2 15517 o1rlimmul 15589 iseralt 15657 gcdzeq 16521 isprm3 16647 vdwnnlem2 16958 ablfaclem3 20037 epttop 22905 lmcnp 23201 dfconn2 23316 txcnp 23517 cmphaushmeo 23697 isfild 23755 cnpflf2 23897 flimfnfcls 23925 alexsubALT 23948 fgcfil 25192 bcthlem5 25249 ivthlem2 25374 ivthlem3 25375 dvfsumrlim 25959 plypf1 26139 noetalem1 27667 noseqinds 28159 axeuclidlem 28766 usgr2wlkneq 29563 wwlksnredwwlkn0 29700 wwlksnextwrd 29701 clwlkclwwlklem2a1 29795 lnon0 30601 hstles 32034 mdsl1i 32124 atcveq0 32151 atcvat4i 32200 cdjreui 32235 issgon 33732 connpconn 34835 outsideofrflx 35713 isbasisrelowllem1 36824 isbasisrelowllem2 36825 poimirlem3 37085 poimirlem29 37111 poimir 37115 heicant 37117 equivtotbnd 37240 ismtybndlem 37268 cvrat4 38905 linepsubN 39214 pmapsub 39230 osumcllem4N 39421 pexmidlem1N 39432 dochexmidlem1 40922 cantnfresb 42725 harval3 42940 clcnvlem 43025 iccpartimp 46729 sbgoldbwt 47089 sbgoldbst 47090 elsetrecslem 48102 |
Copyright terms: Public domain | W3C validator |