![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elsetrecslem | Structured version Visualization version GIF version |
Description: Lemma for elsetrecs 48122. Any element of setrecs(𝐹) is generated by some subset of setrecs(𝐹). This is much weaker than setrec2v 48118. To see why this lemma also requires setrec1 48113, consider what would happen if we replaced 𝐵 with {𝐴}. The antecedent would still hold, but the consequent would fail in general. Consider dispensing with the deduction form. (Contributed by Emmett Weisz, 11-Jul-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elsetrecs.1 | ⊢ 𝐵 = setrecs(𝐹) |
Ref | Expression |
---|---|
elsetrecslem | ⊢ (𝐴 ∈ 𝐵 → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifsn 4788 | . . . . 5 ⊢ (𝐵 ⊆ (𝐵 ∖ {𝐴}) ↔ (𝐵 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝐵)) | |
2 | 1 | simprbi 496 | . . . 4 ⊢ (𝐵 ⊆ (𝐵 ∖ {𝐴}) → ¬ 𝐴 ∈ 𝐵) |
3 | 2 | con2i 139 | . . 3 ⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 ⊆ (𝐵 ∖ {𝐴})) |
4 | elsetrecs.1 | . . . 4 ⊢ 𝐵 = setrecs(𝐹) | |
5 | sseq1 4004 | . . . . . . . . 9 ⊢ (𝑥 = 𝑎 → (𝑥 ⊆ 𝐵 ↔ 𝑎 ⊆ 𝐵)) | |
6 | fveq2 6892 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑎 → (𝐹‘𝑥) = (𝐹‘𝑎)) | |
7 | 6 | eleq2d 2815 | . . . . . . . . 9 ⊢ (𝑥 = 𝑎 → (𝐴 ∈ (𝐹‘𝑥) ↔ 𝐴 ∈ (𝐹‘𝑎))) |
8 | 5, 7 | anbi12d 631 | . . . . . . . 8 ⊢ (𝑥 = 𝑎 → ((𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) ↔ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)))) |
9 | 8 | notbid 318 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → (¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) ↔ ¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)))) |
10 | 9 | spvv 1993 | . . . . . 6 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → ¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎))) |
11 | imnan 399 | . . . . . . . . 9 ⊢ ((𝑎 ⊆ 𝐵 → ¬ 𝐴 ∈ (𝐹‘𝑎)) ↔ ¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎))) | |
12 | idd 24 | . . . . . . . . . . 11 ⊢ (𝑎 ⊆ 𝐵 → (¬ 𝐴 ∈ (𝐹‘𝑎) → ¬ 𝐴 ∈ (𝐹‘𝑎))) | |
13 | vex 3474 | . . . . . . . . . . . . 13 ⊢ 𝑎 ∈ V | |
14 | 13 | a1i 11 | . . . . . . . . . . . 12 ⊢ (𝑎 ⊆ 𝐵 → 𝑎 ∈ V) |
15 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑎 ⊆ 𝐵 → 𝑎 ⊆ 𝐵) | |
16 | 4, 14, 15 | setrec1 48113 | . . . . . . . . . . 11 ⊢ (𝑎 ⊆ 𝐵 → (𝐹‘𝑎) ⊆ 𝐵) |
17 | 12, 16 | jctild 525 | . . . . . . . . . 10 ⊢ (𝑎 ⊆ 𝐵 → (¬ 𝐴 ∈ (𝐹‘𝑎) → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
18 | 17 | a2i 14 | . . . . . . . . 9 ⊢ ((𝑎 ⊆ 𝐵 → ¬ 𝐴 ∈ (𝐹‘𝑎)) → (𝑎 ⊆ 𝐵 → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
19 | 11, 18 | sylbir 234 | . . . . . . . 8 ⊢ (¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)) → (𝑎 ⊆ 𝐵 → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
20 | 19 | adantrd 491 | . . . . . . 7 ⊢ (¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)) → ((𝑎 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝑎) → ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎)))) |
21 | ssdifsn 4788 | . . . . . . 7 ⊢ (𝑎 ⊆ (𝐵 ∖ {𝐴}) ↔ (𝑎 ⊆ 𝐵 ∧ ¬ 𝐴 ∈ 𝑎)) | |
22 | ssdifsn 4788 | . . . . . . 7 ⊢ ((𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}) ↔ ((𝐹‘𝑎) ⊆ 𝐵 ∧ ¬ 𝐴 ∈ (𝐹‘𝑎))) | |
23 | 20, 21, 22 | 3imtr4g 296 | . . . . . 6 ⊢ (¬ (𝑎 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑎)) → (𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}))) |
24 | 10, 23 | syl 17 | . . . . 5 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → (𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}))) |
25 | 24 | alrimiv 1923 | . . . 4 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → ∀𝑎(𝑎 ⊆ (𝐵 ∖ {𝐴}) → (𝐹‘𝑎) ⊆ (𝐵 ∖ {𝐴}))) |
26 | 4, 25 | setrec2v 48118 | . . 3 ⊢ (∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) → 𝐵 ⊆ (𝐵 ∖ {𝐴})) |
27 | 3, 26 | nsyl 140 | . 2 ⊢ (𝐴 ∈ 𝐵 → ¬ ∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) |
28 | df-ex 1775 | . 2 ⊢ (∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥)) ↔ ¬ ∀𝑥 ¬ (𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) | |
29 | 27, 28 | sylibr 233 | 1 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝐴 ∈ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1532 = wceq 1534 ∃wex 1774 ∈ wcel 2099 Vcvv 3470 ∖ cdif 3942 ⊆ wss 3945 {csn 4625 ‘cfv 6543 setrecscsetrecs 48105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-reg 9610 ax-inf2 9659 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-om 7866 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-r1 9782 df-rank 9783 df-setrecs 48106 |
This theorem is referenced by: elsetrecs 48122 |
Copyright terms: Public domain | W3C validator |