![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iseven | Structured version Visualization version GIF version |
Description: The predicate "is an even number". An even number is an integer which is divisible by 2, i.e. the result of dividing the even integer by 2 is still an integer. (Contributed by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
iseven | ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7422 | . . 3 ⊢ (𝑧 = 𝑍 → (𝑧 / 2) = (𝑍 / 2)) | |
2 | 1 | eleq1d 2814 | . 2 ⊢ (𝑧 = 𝑍 → ((𝑧 / 2) ∈ ℤ ↔ (𝑍 / 2) ∈ ℤ)) |
3 | df-even 46957 | . 2 ⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} | |
4 | 2, 3 | elrab2 3684 | 1 ⊢ (𝑍 ∈ Even ↔ (𝑍 ∈ ℤ ∧ (𝑍 / 2) ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 (class class class)co 7415 / cdiv 11896 2c2 12292 ℤcz 12583 Even ceven 46955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-iota 6495 df-fv 6551 df-ov 7418 df-even 46957 |
This theorem is referenced by: evenz 46961 evendiv2z 46963 evenm1odd 46970 evenp1odd 46971 oddp1eveni 46972 oddm1eveni 46973 evennodd 46974 oddneven 46975 enege 46976 zeoALTV 47001 oddm1evenALTV 47006 oddp1evenALTV 47007 0evenALTV 47019 2evenALTV 47023 6even 47042 8even 47044 |
Copyright terms: Public domain | W3C validator |