Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irngnzply1 Structured version   Visualization version   GIF version

Theorem irngnzply1 33301
Description: In the case of a field 𝐸, the roots of nonzero polynomials 𝑝 with coefficients in a subfield 𝐹 are exactly the integral elements over 𝐹. Roots of nonzero polynomials are called algebraic numbers, so this shows that in the case of a field, elements integral over 𝐹 are exactly the algebraic numbers. In this formula, dom 𝑂 represents the polynomials, and 𝑍 the zero polynomial. (Contributed by Thierry Arnoux, 5-Feb-2025.)
Hypotheses
Ref Expression
irngnzply1.o 𝑂 = (𝐸 evalSub1 𝐹)
irngnzply1.z 𝑍 = (0g‘(Poly1𝐸))
irngnzply1.1 0 = (0g𝐸)
irngnzply1.e (𝜑𝐸 ∈ Field)
irngnzply1.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
Assertion
Ref Expression
irngnzply1 (𝜑 → (𝐸 IntgRing 𝐹) = 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }))
Distinct variable groups:   𝐸,𝑝   𝐹,𝑝   𝑂,𝑝   𝜑,𝑝
Allowed substitution hints:   0 (𝑝)   𝑍(𝑝)

Proof of Theorem irngnzply1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 irngnzply1.o . . . . . . . 8 𝑂 = (𝐸 evalSub1 𝐹)
2 eqid 2727 . . . . . . . 8 (𝐸s 𝐹) = (𝐸s 𝐹)
3 eqid 2727 . . . . . . . 8 (Base‘𝐸) = (Base‘𝐸)
4 irngnzply1.1 . . . . . . . 8 0 = (0g𝐸)
5 irngnzply1.e . . . . . . . . 9 (𝜑𝐸 ∈ Field)
65fldcrngd 20626 . . . . . . . 8 (𝜑𝐸 ∈ CRing)
7 irngnzply1.f . . . . . . . . . 10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
8 issdrg 20665 . . . . . . . . . 10 (𝐹 ∈ (SubDRing‘𝐸) ↔ (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
97, 8sylib 217 . . . . . . . . 9 (𝜑 → (𝐸 ∈ DivRing ∧ 𝐹 ∈ (SubRing‘𝐸) ∧ (𝐸s 𝐹) ∈ DivRing))
109simp2d 1141 . . . . . . . 8 (𝜑𝐹 ∈ (SubRing‘𝐸))
111, 2, 3, 4, 6, 10elirng 33296 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐸 IntgRing 𝐹) ↔ (𝑥 ∈ (Base‘𝐸) ∧ ∃𝑝 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑝)‘𝑥) = 0 )))
1211biimpa 476 . . . . . 6 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → (𝑥 ∈ (Base‘𝐸) ∧ ∃𝑝 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑝)‘𝑥) = 0 ))
1312simprd 495 . . . . 5 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → ∃𝑝 ∈ (Monic1p‘(𝐸s 𝐹))((𝑂𝑝)‘𝑥) = 0 )
14 eqid 2727 . . . . . . . . . 10 (Poly1‘(𝐸s 𝐹)) = (Poly1‘(𝐸s 𝐹))
15 eqid 2727 . . . . . . . . . 10 (Base‘(Poly1‘(𝐸s 𝐹))) = (Base‘(Poly1‘(𝐸s 𝐹)))
16 eqid 2727 . . . . . . . . . 10 (Monic1p‘(𝐸s 𝐹)) = (Monic1p‘(𝐸s 𝐹))
1714, 15, 16mon1pcl 26067 . . . . . . . . 9 (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
1817adantl 481 . . . . . . . 8 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
19 eqid 2727 . . . . . . . . . . . . 13 (𝐸s (Base‘𝐸)) = (𝐸s (Base‘𝐸))
201, 3, 19, 2, 14evls1rhm 22228 . . . . . . . . . . . 12 ((𝐸 ∈ CRing ∧ 𝐹 ∈ (SubRing‘𝐸)) → 𝑂 ∈ ((Poly1‘(𝐸s 𝐹)) RingHom (𝐸s (Base‘𝐸))))
216, 10, 20syl2anc 583 . . . . . . . . . . 11 (𝜑𝑂 ∈ ((Poly1‘(𝐸s 𝐹)) RingHom (𝐸s (Base‘𝐸))))
22 eqid 2727 . . . . . . . . . . . 12 (Base‘(𝐸s (Base‘𝐸))) = (Base‘(𝐸s (Base‘𝐸)))
2315, 22rhmf 20413 . . . . . . . . . . 11 (𝑂 ∈ ((Poly1‘(𝐸s 𝐹)) RingHom (𝐸s (Base‘𝐸))) → 𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s (Base‘𝐸))))
2421, 23syl 17 . . . . . . . . . 10 (𝜑𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s (Base‘𝐸))))
2524fdmd 6727 . . . . . . . . 9 (𝜑 → dom 𝑂 = (Base‘(Poly1‘(𝐸s 𝐹))))
2625adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → dom 𝑂 = (Base‘(Poly1‘(𝐸s 𝐹))))
2718, 26eleqtrrd 2831 . . . . . . 7 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝 ∈ dom 𝑂)
28 eqid 2727 . . . . . . . . . 10 (0g‘(Poly1‘(𝐸s 𝐹))) = (0g‘(Poly1‘(𝐸s 𝐹)))
2914, 28, 16mon1pn0 26069 . . . . . . . . 9 (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) → 𝑝 ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
3029adantl 481 . . . . . . . 8 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝 ≠ (0g‘(Poly1‘(𝐸s 𝐹))))
31 eqid 2727 . . . . . . . . . 10 (Poly1𝐸) = (Poly1𝐸)
32 irngnzply1.z . . . . . . . . . 10 𝑍 = (0g‘(Poly1𝐸))
3331, 2, 14, 15, 10, 32ressply10g 33178 . . . . . . . . 9 (𝜑𝑍 = (0g‘(Poly1‘(𝐸s 𝐹))))
3433adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑍 = (0g‘(Poly1‘(𝐸s 𝐹))))
3530, 34neeqtrrd 3010 . . . . . . 7 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝𝑍)
36 eldifsn 4786 . . . . . . 7 (𝑝 ∈ (dom 𝑂 ∖ {𝑍}) ↔ (𝑝 ∈ dom 𝑂𝑝𝑍))
3727, 35, 36sylanbrc 582 . . . . . 6 ((𝜑𝑝 ∈ (Monic1p‘(𝐸s 𝐹))) → 𝑝 ∈ (dom 𝑂 ∖ {𝑍}))
3837ad2ant2r 746 . . . . 5 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑝 ∈ (dom 𝑂 ∖ {𝑍}))
395ad2antrr 725 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝐸 ∈ Field)
40 fvexd 6906 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → (Base‘𝐸) ∈ V)
4124ad2antrr 725 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s (Base‘𝐸))))
4217ad2antrl 727 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
4341, 42ffvelcdmd 7089 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → (𝑂𝑝) ∈ (Base‘(𝐸s (Base‘𝐸))))
4419, 3, 22, 39, 40, 43pwselbas 17462 . . . . . . 7 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → (𝑂𝑝):(Base‘𝐸)⟶(Base‘𝐸))
4544ffnd 6717 . . . . . 6 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → (𝑂𝑝) Fn (Base‘𝐸))
4612simpld 494 . . . . . . 7 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → 𝑥 ∈ (Base‘𝐸))
4746adantr 480 . . . . . 6 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑥 ∈ (Base‘𝐸))
48 simprr 772 . . . . . 6 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → ((𝑂𝑝)‘𝑥) = 0 )
49 fniniseg 7063 . . . . . . 7 ((𝑂𝑝) Fn (Base‘𝐸) → (𝑥 ∈ ((𝑂𝑝) “ { 0 }) ↔ (𝑥 ∈ (Base‘𝐸) ∧ ((𝑂𝑝)‘𝑥) = 0 )))
5049biimpar 477 . . . . . 6 (((𝑂𝑝) Fn (Base‘𝐸) ∧ (𝑥 ∈ (Base‘𝐸) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑥 ∈ ((𝑂𝑝) “ { 0 }))
5145, 47, 48, 50syl12anc 836 . . . . 5 (((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) ∧ (𝑝 ∈ (Monic1p‘(𝐸s 𝐹)) ∧ ((𝑂𝑝)‘𝑥) = 0 )) → 𝑥 ∈ ((𝑂𝑝) “ { 0 }))
5213, 38, 51reximssdv 3167 . . . 4 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → ∃𝑝 ∈ (dom 𝑂 ∖ {𝑍})𝑥 ∈ ((𝑂𝑝) “ { 0 }))
53 eliun 4995 . . . 4 (𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }) ↔ ∃𝑝 ∈ (dom 𝑂 ∖ {𝑍})𝑥 ∈ ((𝑂𝑝) “ { 0 }))
5452, 53sylibr 233 . . 3 ((𝜑𝑥 ∈ (𝐸 IntgRing 𝐹)) → 𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }))
55 nfv 1910 . . . . 5 𝑝𝜑
56 nfiu1 5025 . . . . . 6 𝑝 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })
5756nfcri 2885 . . . . 5 𝑝 𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })
5855, 57nfan 1895 . . . 4 𝑝(𝜑𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }))
595ad2antrr 725 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝐸 ∈ Field)
607ad2antrr 725 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝐹 ∈ (SubDRing‘𝐸))
61 eldifi 4122 . . . . . . . 8 (𝑝 ∈ (dom 𝑂 ∖ {𝑍}) → 𝑝 ∈ dom 𝑂)
6261adantl 481 . . . . . . 7 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝑝 ∈ dom 𝑂)
6362adantr 480 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑝 ∈ dom 𝑂)
64 eldifsni 4789 . . . . . . . 8 (𝑝 ∈ (dom 𝑂 ∖ {𝑍}) → 𝑝𝑍)
6564adantl 481 . . . . . . 7 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝑝𝑍)
6665adantr 480 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑝𝑍)
675adantr 480 . . . . . . . . . 10 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝐸 ∈ Field)
68 fvexd 6906 . . . . . . . . . 10 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → (Base‘𝐸) ∈ V)
6924adantr 480 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝑂:(Base‘(Poly1‘(𝐸s 𝐹)))⟶(Base‘(𝐸s (Base‘𝐸))))
7025adantr 480 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → dom 𝑂 = (Base‘(Poly1‘(𝐸s 𝐹))))
7162, 70eleqtrd 2830 . . . . . . . . . . 11 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → 𝑝 ∈ (Base‘(Poly1‘(𝐸s 𝐹))))
7269, 71ffvelcdmd 7089 . . . . . . . . . 10 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → (𝑂𝑝) ∈ (Base‘(𝐸s (Base‘𝐸))))
7319, 3, 22, 67, 68, 72pwselbas 17462 . . . . . . . . 9 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → (𝑂𝑝):(Base‘𝐸)⟶(Base‘𝐸))
7473ffnd 6717 . . . . . . . 8 ((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) → (𝑂𝑝) Fn (Base‘𝐸))
7549biimpa 476 . . . . . . . 8 (((𝑂𝑝) Fn (Base‘𝐸) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → (𝑥 ∈ (Base‘𝐸) ∧ ((𝑂𝑝)‘𝑥) = 0 ))
7674, 75sylan 579 . . . . . . 7 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → (𝑥 ∈ (Base‘𝐸) ∧ ((𝑂𝑝)‘𝑥) = 0 ))
7776simprd 495 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → ((𝑂𝑝)‘𝑥) = 0 )
7876simpld 494 . . . . . 6 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑥 ∈ (Base‘𝐸))
791, 32, 4, 59, 60, 3, 63, 66, 77, 78irngnzply1lem 33300 . . . . 5 (((𝜑𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑥 ∈ (𝐸 IntgRing 𝐹))
8079adantllr 718 . . . 4 ((((𝜑𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })) ∧ 𝑝 ∈ (dom 𝑂 ∖ {𝑍})) ∧ 𝑥 ∈ ((𝑂𝑝) “ { 0 })) → 𝑥 ∈ (𝐸 IntgRing 𝐹))
8153biimpi 215 . . . . 5 (𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }) → ∃𝑝 ∈ (dom 𝑂 ∖ {𝑍})𝑥 ∈ ((𝑂𝑝) “ { 0 }))
8281adantl 481 . . . 4 ((𝜑𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })) → ∃𝑝 ∈ (dom 𝑂 ∖ {𝑍})𝑥 ∈ ((𝑂𝑝) “ { 0 }))
8358, 80, 82r19.29af 3260 . . 3 ((𝜑𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })) → 𝑥 ∈ (𝐸 IntgRing 𝐹))
8454, 83impbida 800 . 2 (𝜑 → (𝑥 ∈ (𝐸 IntgRing 𝐹) ↔ 𝑥 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 })))
8584eqrdv 2725 1 (𝜑 → (𝐸 IntgRing 𝐹) = 𝑝 ∈ (dom 𝑂 ∖ {𝑍})((𝑂𝑝) “ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  wrex 3065  Vcvv 3469  cdif 3941  {csn 4624   ciun 4991  ccnv 5671  dom cdm 5672  cima 5675   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  Basecbs 17171  s cress 17200  0gc0g 17412  s cpws 17419  CRingccrg 20165   RingHom crh 20397  SubRingcsubrg 20495  DivRingcdr 20613  Fieldcfield 20614  SubDRingcsdrg 20663  Poly1cpl1 22083   evalSub1 ces1 22219  Monic1pcmn1 26048   IntgRing cirng 33293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-addf 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-sup 9457  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-fzo 13652  df-seq 13991  df-hash 14314  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-starv 17239  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-unif 17247  df-hom 17248  df-cco 17249  df-0g 17414  df-gsum 17415  df-prds 17420  df-pws 17422  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-mhm 18731  df-submnd 18732  df-grp 18884  df-minusg 18885  df-sbg 18886  df-mulg 19015  df-subg 19069  df-ghm 19159  df-cntz 19259  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-srg 20118  df-ring 20166  df-cring 20167  df-oppr 20262  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-rhm 20400  df-subrng 20472  df-subrg 20497  df-drng 20615  df-field 20616  df-sdrg 20664  df-lmod 20734  df-lss 20805  df-lsp 20845  df-rlreg 21219  df-cnfld 21267  df-assa 21774  df-asp 21775  df-ascl 21776  df-psr 21829  df-mvr 21830  df-mpl 21831  df-opsr 21833  df-evls 22005  df-evl 22006  df-psr1 22086  df-vr1 22087  df-ply1 22088  df-coe1 22089  df-evls1 22221  df-evl1 22222  df-mdeg 25975  df-deg1 25976  df-mon1 26053  df-uc1p 26054  df-irng 33294
This theorem is referenced by:  irngnminplynz  33318
  Copyright terms: Public domain W3C validator