![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > honegneg | Structured version Visualization version GIF version |
Description: Double negative of a Hilbert space operator. (Contributed by NM, 24-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
honegneg | ⊢ (𝑇: ℋ⟶ ℋ → (-1 ·op (-1 ·op 𝑇)) = 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1mulneg1e1 12449 | . . 3 ⊢ (-1 · -1) = 1 | |
2 | 1 | oveq1i 7424 | . 2 ⊢ ((-1 · -1) ·op 𝑇) = (1 ·op 𝑇) |
3 | neg1cn 12350 | . . 3 ⊢ -1 ∈ ℂ | |
4 | homulass 31605 | . . 3 ⊢ ((-1 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((-1 · -1) ·op 𝑇) = (-1 ·op (-1 ·op 𝑇))) | |
5 | 3, 3, 4 | mp3an12 1448 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → ((-1 · -1) ·op 𝑇) = (-1 ·op (-1 ·op 𝑇))) |
6 | homullid 31603 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op 𝑇) = 𝑇) | |
7 | 2, 5, 6 | 3eqtr3a 2792 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (-1 ·op (-1 ·op 𝑇)) = 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⟶wf 6538 (class class class)co 7414 ℂcc 11130 1c1 11133 · cmul 11137 -cneg 11469 ℋchba 30722 ·op chot 30742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-hilex 30802 ax-hfvmul 30808 ax-hvmulid 30809 ax-hvmulass 30810 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-ltxr 11277 df-sub 11470 df-neg 11471 df-homul 31534 |
This theorem is referenced by: hosubneg 31610 honegsubdi 31613 |
Copyright terms: Public domain | W3C validator |