HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homulass Structured version   Visualization version   GIF version

Theorem homulass 31606
Description: Scalar product associative law for Hilbert space operators. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
Assertion
Ref Expression
homulass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇)))

Proof of Theorem homulass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mulcl 11217 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
2 homval 31545 . . . . . . . . 9 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥)))
31, 2syl3an1 1161 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥)))
433expia 1119 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥))))
543impa 1108 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥))))
65imp 406 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 · 𝐵) · (𝑇𝑥)))
7 homval 31545 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐵 ·op 𝑇)‘𝑥) = (𝐵 · (𝑇𝑥)))
87oveq2d 7431 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
983expa 1116 . . . . . . 7 (((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1093adantl1 1164 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
11 ffvelcdm 7086 . . . . . . . . . 10 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
12 ax-hvmulass 30811 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇𝑥) ∈ ℋ) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1311, 12syl3an3 1163 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
14133expa 1116 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1514exp43 436 . . . . . . 7 (𝐴 ∈ ℂ → (𝐵 ∈ ℂ → (𝑇: ℋ⟶ ℋ → (𝑥 ∈ ℋ → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥)))))))
16153imp1 1345 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 · 𝐵) · (𝑇𝑥)) = (𝐴 · (𝐵 · (𝑇𝑥))))
1710, 16eqtr4d 2771 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)) = ((𝐴 · 𝐵) · (𝑇𝑥)))
186, 17eqtr4d 2771 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
19 homulcl 31563 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐵 ·op 𝑇): ℋ⟶ ℋ)
20 homval 31545 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
2119, 20syl3an2 1162 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
22213expia 1119 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) → (𝑥 ∈ ℋ → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥))))
23223impb 1113 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥))))
2423imp 406 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) = (𝐴 · ((𝐵 ·op 𝑇)‘𝑥)))
2518, 24eqtr4d 2771 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥))
2625ralrimiva 3142 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ∀𝑥 ∈ ℋ (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥))
27 homulcl 31563 . . . 4 (((𝐴 · 𝐵) ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇): ℋ⟶ ℋ)
281, 27stoic3 1771 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇): ℋ⟶ ℋ)
29 homulcl 31563 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐵 ·op 𝑇): ℋ⟶ ℋ) → (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
3019, 29sylan2 592 . . . 4 ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ)) → (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
31303impb 1113 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ)
32 hoeq 31564 . . 3 ((((𝐴 · 𝐵) ·op 𝑇): ℋ⟶ ℋ ∧ (𝐴 ·op (𝐵 ·op 𝑇)): ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) ↔ ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇))))
3328, 31, 32syl2anc 583 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ (((𝐴 · 𝐵) ·op 𝑇)‘𝑥) = ((𝐴 ·op (𝐵 ·op 𝑇))‘𝑥) ↔ ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇))))
3426, 33mpbid 231 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 · 𝐵) ·op 𝑇) = (𝐴 ·op (𝐵 ·op 𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3057  wf 6539  cfv 6543  (class class class)co 7415  cc 11131   · cmul 11138  chba 30723   · csm 30725   ·op chot 30743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-mulcl 11195  ax-hilex 30803  ax-hfvmul 30809  ax-hvmulass 30811
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-map 8841  df-homul 31535
This theorem is referenced by:  homul12  31609  honegneg  31610  leopmul  31938  nmopleid  31943  opsqrlem1  31944  opsqrlem6  31949
  Copyright terms: Public domain W3C validator