![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlphl | Structured version Visualization version GIF version |
Description: Every subcomplex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
hlphl | ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcph 25285 | . 2 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil) | |
2 | cphphl 25092 | . 2 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 PreHilcphl 21549 ℂPreHilccph 25087 ℂHilchl 25255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-nul 5300 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-rab 3429 df-v 3472 df-sbc 3776 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-xp 5678 df-cnv 5680 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fv 6550 df-ov 7417 df-cph 25089 df-hl 25258 |
This theorem is referenced by: chlcsschl 25299 pjthlem1 25358 pjth 25360 pjth2 25361 cldcss 25362 hlhil 25364 |
Copyright terms: Public domain | W3C validator |