MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlphl Structured version   Visualization version   GIF version

Theorem hlphl 25286
Description: Every subcomplex Hilbert space is an inner product space (also called a pre-Hilbert space). (Contributed by NM, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
hlphl (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil)

Proof of Theorem hlphl
StepHypRef Expression
1 hlcph 25285 . 2 (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)
2 cphphl 25092 . 2 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
31, 2syl 17 1 (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  PreHilcphl 21549  ℂPreHilccph 25087  ℂHilchl 25255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-nul 5300
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2937  df-rab 3429  df-v 3472  df-sbc 3776  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-xp 5678  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fv 6550  df-ov 7417  df-cph 25089  df-hl 25258
This theorem is referenced by:  chlcsschl  25299  pjthlem1  25358  pjth  25360  pjth2  25361  cldcss  25362  hlhil  25364
  Copyright terms: Public domain W3C validator