Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbalg Structured version   Visualization version   GIF version

Theorem hbalg 43988
Description: Closed form of hbal 2157. Derived from hbalgVD 44338. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
hbalg (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥𝑦𝜑))

Proof of Theorem hbalg
StepHypRef Expression
1 alim 1805 . . 3 (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑦𝑥𝜑))
2 ax-11 2147 . . 3 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
31, 2syl6 35 . 2 (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥𝑦𝜑))
43axc4i 2311 1 (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-10 2130  ax-11 2147  ax-12 2167
This theorem depends on definitions:  df-bi 206  df-or 847  df-ex 1775  df-nf 1779
This theorem is referenced by:  hbexgVD  44339
  Copyright terms: Public domain W3C validator