MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alim Structured version   Visualization version   GIF version

Theorem alim 1805
Description: Restatement of Axiom ax-4 1804, for labeling consistency. It should be the only theorem using ax-4 1804. (Contributed by NM, 10-Jan-1993.)
Assertion
Ref Expression
alim (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem alim
StepHypRef Expression
1 ax-4 1804 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1532
This theorem was proved from axioms:  ax-4 1804
This theorem is referenced by:  alimi  1806  al2im  1809  sylgt  1817  19.38a  1835  stdpc5v  1934  axc4  2309  hbaltg  35393  bj-2alim  36077  bj-alexim  36093  bj-cbvalimt  36105  bj-eximALT  36107  bj-hbalt  36148  bj-nfdt0  36162  bj-nnf-alrim  36222  bj-nnflemaa  36229  bj-nnflemea  36232  stdpc5t  36294  al3im  43049  hbalg  43966  al2imVD  44273  hbalgVD  44316
  Copyright terms: Public domain W3C validator