![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alim | Structured version Visualization version GIF version |
Description: Restatement of Axiom ax-4 1804, for labeling consistency. It should be the only theorem using ax-4 1804. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
alim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-4 1804 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1532 |
This theorem was proved from axioms: ax-4 1804 |
This theorem is referenced by: alimi 1806 al2im 1809 sylgt 1817 19.38a 1835 stdpc5v 1934 axc4 2309 hbaltg 35393 bj-2alim 36077 bj-alexim 36093 bj-cbvalimt 36105 bj-eximALT 36107 bj-hbalt 36148 bj-nfdt0 36162 bj-nnf-alrim 36222 bj-nnflemaa 36229 bj-nnflemea 36232 stdpc5t 36294 al3im 43049 hbalg 43966 al2imVD 44273 hbalgVD 44316 |
Copyright terms: Public domain | W3C validator |