![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fovcdmd | Structured version Visualization version GIF version |
Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
Ref | Expression |
---|---|
fovcdmd.1 | ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
fovcdmd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑅) |
fovcdmd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fovcdmd | ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fovcdmd.1 | . 2 ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) | |
2 | fovcdmd.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑅) | |
3 | fovcdmd.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
4 | fovcdm 7595 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | |
5 | 1, 2, 3, 4 | syl3anc 1368 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 × cxp 5678 ⟶wf 6547 (class class class)co 7424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-fv 6559 df-ov 7427 |
This theorem is referenced by: eroveu 8835 fseqenlem1 10053 rlimcn2 15573 homarel 18030 curf1cl 18225 curf2cl 18228 hofcllem 18255 yonedalem3b 18276 gasubg 19258 gacan 19261 gapm 19262 gastacos 19266 orbsta 19269 galactghm 19364 sylow1lem2 19559 sylow2alem2 19578 sylow3lem1 19587 efgcpbllemb 19715 frgpuplem 19732 frlmbas3 21715 mamucl 22319 mamuass 22320 mamudi 22321 mamudir 22322 mamuvs1 22323 mamuvs2 22324 mamulid 22361 mamurid 22362 mamutpos 22378 matgsumcl 22380 mavmulcl 22467 mavmulass 22469 mdetleib2 22508 mdetf 22515 mdetdiaglem 22518 mdetrlin 22522 mdetrsca 22523 mdetralt 22528 mdetunilem7 22538 maducoeval2 22560 madugsum 22563 madurid 22564 tsmsxplem2 24076 isxmet2d 24251 ismet2 24257 prdsxmetlem 24292 comet 24440 ipcn 25192 ovoliunlem2 25450 itg1addlem4 25646 itg1addlem4OLD 25647 itg1addlem5 25648 mbfi1fseqlem5 25667 limccnp2 25839 midcl 28599 fedgmullem2 33333 pstmxmet 33503 cvmlift2lem9 34926 isbnd3 37262 prdsbnd 37271 iscringd 37476 rmxycomplete 42341 rmxyadd 42345 2arympt 47773 |
Copyright terms: Public domain | W3C validator |