MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmcfil Structured version   Visualization version   GIF version

Theorem fmcfil 25187
Description: The Cauchy filter condition for a filter map. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
fmcfil ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐹,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝑌,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧

Proof of Theorem fmcfil
Dummy variables 𝑢 𝑠 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6928 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
2 fmval 23834 . . . 4 ((𝑋 ∈ dom ∞Met ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
31, 2syl3an1 1161 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
43eleq1d 2813 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (CauFil‘𝐷)))
5 simp1 1134 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐷 ∈ (∞Met‘𝑋))
6 simp2 1135 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐵 ∈ (fBas‘𝑌))
7 simp3 1136 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹:𝑌𝑋)
813ad2ant1 1131 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋 ∈ dom ∞Met)
9 eqid 2727 . . . . 5 ran (𝑦𝐵 ↦ (𝐹𝑦)) = ran (𝑦𝐵 ↦ (𝐹𝑦))
109fbasrn 23775 . . . 4 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋 ∈ dom ∞Met) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
116, 7, 8, 10syl3anc 1369 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
12 fgcfil 25186 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋)) → ((𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥))
135, 11, 12syl2anc 583 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥))
14 imassrn 6068 . . . . . . . 8 (𝐹𝑦) ⊆ ran 𝐹
15 frn 6723 . . . . . . . . 9 (𝐹:𝑌𝑋 → ran 𝐹𝑋)
16153ad2ant3 1133 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran 𝐹𝑋)
1714, 16sstrid 3989 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐹𝑦) ⊆ 𝑋)
188, 17ssexd 5318 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐹𝑦) ∈ V)
1918ralrimivw 3145 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ∀𝑦𝐵 (𝐹𝑦) ∈ V)
20 eqid 2727 . . . . . 6 (𝑦𝐵 ↦ (𝐹𝑦)) = (𝑦𝐵 ↦ (𝐹𝑦))
21 raleq 3317 . . . . . . 7 (𝑠 = (𝐹𝑦) → (∀𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
2221raleqbi1dv 3328 . . . . . 6 (𝑠 = (𝐹𝑦) → (∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
2320, 22rexrnmptw 7099 . . . . 5 (∀𝑦𝐵 (𝐹𝑦) ∈ V → (∃𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
2419, 23syl 17 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
25 simpl3 1191 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → 𝐹:𝑌𝑋)
2625ffnd 6717 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → 𝐹 Fn 𝑌)
27 fbelss 23724 . . . . . . . 8 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑦𝐵) → 𝑦𝑌)
286, 27sylan 579 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → 𝑦𝑌)
29 oveq1 7421 . . . . . . . . . 10 (𝑢 = (𝐹𝑧) → (𝑢𝐷𝑣) = ((𝐹𝑧)𝐷𝑣))
3029breq1d 5152 . . . . . . . . 9 (𝑢 = (𝐹𝑧) → ((𝑢𝐷𝑣) < 𝑥 ↔ ((𝐹𝑧)𝐷𝑣) < 𝑥))
3130ralbidv 3172 . . . . . . . 8 (𝑢 = (𝐹𝑧) → (∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥))
3231ralima 7244 . . . . . . 7 ((𝐹 Fn 𝑌𝑦𝑌) → (∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥))
3326, 28, 32syl2anc 583 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥))
34 oveq2 7422 . . . . . . . . . 10 (𝑣 = (𝐹𝑤) → ((𝐹𝑧)𝐷𝑣) = ((𝐹𝑧)𝐷(𝐹𝑤)))
3534breq1d 5152 . . . . . . . . 9 (𝑣 = (𝐹𝑤) → (((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3635ralima 7244 . . . . . . . 8 ((𝐹 Fn 𝑌𝑦𝑌) → (∀𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3726, 28, 36syl2anc 583 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3837ralbidv 3172 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑧𝑦𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3933, 38bitrd 279 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
4039rexbidva 3171 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑦𝐵𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
4124, 40bitrd 279 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
4241ralbidv 3172 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∀𝑥 ∈ ℝ+𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
434, 13, 423bitrd 305 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056  wrex 3065  Vcvv 3469  wss 3944   class class class wbr 5142  cmpt 5225  dom cdm 5672  ran crn 5673  cima 5675   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414   < clt 11270  +crp 12998  ∞Metcxmet 21251  fBascfbas 21254  filGencfg 21255   FilMap cfm 23824  CauFilccfil 25167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-er 8718  df-map 8838  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-2 12297  df-rp 12999  df-xneg 13116  df-xadd 13117  df-xmul 13118  df-ico 13354  df-xmet 21259  df-fbas 21263  df-fg 21264  df-fil 23737  df-fm 23829  df-cfil 25170
This theorem is referenced by:  caucfil  25198
  Copyright terms: Public domain W3C validator