Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlsmulval Structured version   Visualization version   GIF version

Theorem evlsmulval 41774
Description: Polynomial evaluation builder for multiplication. (Contributed by SN, 27-Jul-2024.)
Hypotheses
Ref Expression
evlsaddval.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsaddval.p 𝑃 = (𝐼 mPoly 𝑈)
evlsaddval.u 𝑈 = (𝑆s 𝑅)
evlsaddval.k 𝐾 = (Base‘𝑆)
evlsaddval.b 𝐵 = (Base‘𝑃)
evlsaddval.i (𝜑𝐼𝑍)
evlsaddval.s (𝜑𝑆 ∈ CRing)
evlsaddval.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsaddval.a (𝜑𝐴 ∈ (𝐾m 𝐼))
evlsaddval.m (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))
evlsaddval.n (𝜑 → (𝑁𝐵 ∧ ((𝑄𝑁)‘𝐴) = 𝑊))
evlsmulval.g = (.r𝑃)
evlsmulval.f · = (.r𝑆)
Assertion
Ref Expression
evlsmulval (𝜑 → ((𝑀 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 𝑁))‘𝐴) = (𝑉 · 𝑊)))

Proof of Theorem evlsmulval
StepHypRef Expression
1 evlsaddval.i . . . . 5 (𝜑𝐼𝑍)
2 evlsaddval.s . . . . 5 (𝜑𝑆 ∈ CRing)
3 evlsaddval.r . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝑆))
4 evlsaddval.q . . . . . 6 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
5 evlsaddval.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑈)
6 evlsaddval.u . . . . . 6 𝑈 = (𝑆s 𝑅)
7 eqid 2727 . . . . . 6 (𝑆s (𝐾m 𝐼)) = (𝑆s (𝐾m 𝐼))
8 evlsaddval.k . . . . . 6 𝐾 = (Base‘𝑆)
94, 5, 6, 7, 8evlsrhm 22027 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))))
101, 2, 3, 9syl3anc 1369 . . . 4 (𝜑𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))))
11 rhmrcl1 20408 . . . 4 (𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))) → 𝑃 ∈ Ring)
1210, 11syl 17 . . 3 (𝜑𝑃 ∈ Ring)
13 evlsaddval.m . . . 4 (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))
1413simpld 494 . . 3 (𝜑𝑀𝐵)
15 evlsaddval.n . . . 4 (𝜑 → (𝑁𝐵 ∧ ((𝑄𝑁)‘𝐴) = 𝑊))
1615simpld 494 . . 3 (𝜑𝑁𝐵)
17 evlsaddval.b . . . 4 𝐵 = (Base‘𝑃)
18 evlsmulval.g . . . 4 = (.r𝑃)
1917, 18ringcl 20183 . . 3 ((𝑃 ∈ Ring ∧ 𝑀𝐵𝑁𝐵) → (𝑀 𝑁) ∈ 𝐵)
2012, 14, 16, 19syl3anc 1369 . 2 (𝜑 → (𝑀 𝑁) ∈ 𝐵)
21 eqid 2727 . . . . . . 7 (.r‘(𝑆s (𝐾m 𝐼))) = (.r‘(𝑆s (𝐾m 𝐼)))
2217, 18, 21rhmmul 20418 . . . . . 6 ((𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))) ∧ 𝑀𝐵𝑁𝐵) → (𝑄‘(𝑀 𝑁)) = ((𝑄𝑀)(.r‘(𝑆s (𝐾m 𝐼)))(𝑄𝑁)))
2310, 14, 16, 22syl3anc 1369 . . . . 5 (𝜑 → (𝑄‘(𝑀 𝑁)) = ((𝑄𝑀)(.r‘(𝑆s (𝐾m 𝐼)))(𝑄𝑁)))
24 eqid 2727 . . . . . 6 (Base‘(𝑆s (𝐾m 𝐼))) = (Base‘(𝑆s (𝐾m 𝐼)))
25 ovexd 7449 . . . . . 6 (𝜑 → (𝐾m 𝐼) ∈ V)
2617, 24rhmf 20417 . . . . . . . 8 (𝑄 ∈ (𝑃 RingHom (𝑆s (𝐾m 𝐼))) → 𝑄:𝐵⟶(Base‘(𝑆s (𝐾m 𝐼))))
2710, 26syl 17 . . . . . . 7 (𝜑𝑄:𝐵⟶(Base‘(𝑆s (𝐾m 𝐼))))
2827, 14ffvelcdmd 7089 . . . . . 6 (𝜑 → (𝑄𝑀) ∈ (Base‘(𝑆s (𝐾m 𝐼))))
2927, 16ffvelcdmd 7089 . . . . . 6 (𝜑 → (𝑄𝑁) ∈ (Base‘(𝑆s (𝐾m 𝐼))))
30 evlsmulval.f . . . . . 6 · = (.r𝑆)
317, 24, 2, 25, 28, 29, 30, 21pwsmulrval 17466 . . . . 5 (𝜑 → ((𝑄𝑀)(.r‘(𝑆s (𝐾m 𝐼)))(𝑄𝑁)) = ((𝑄𝑀) ∘f · (𝑄𝑁)))
3223, 31eqtrd 2767 . . . 4 (𝜑 → (𝑄‘(𝑀 𝑁)) = ((𝑄𝑀) ∘f · (𝑄𝑁)))
3332fveq1d 6893 . . 3 (𝜑 → ((𝑄‘(𝑀 𝑁))‘𝐴) = (((𝑄𝑀) ∘f · (𝑄𝑁))‘𝐴))
347, 8, 24, 2, 25, 28pwselbas 17464 . . . . 5 (𝜑 → (𝑄𝑀):(𝐾m 𝐼)⟶𝐾)
3534ffnd 6717 . . . 4 (𝜑 → (𝑄𝑀) Fn (𝐾m 𝐼))
367, 8, 24, 2, 25, 29pwselbas 17464 . . . . 5 (𝜑 → (𝑄𝑁):(𝐾m 𝐼)⟶𝐾)
3736ffnd 6717 . . . 4 (𝜑 → (𝑄𝑁) Fn (𝐾m 𝐼))
38 evlsaddval.a . . . 4 (𝜑𝐴 ∈ (𝐾m 𝐼))
39 fnfvof 7696 . . . 4 ((((𝑄𝑀) Fn (𝐾m 𝐼) ∧ (𝑄𝑁) Fn (𝐾m 𝐼)) ∧ ((𝐾m 𝐼) ∈ V ∧ 𝐴 ∈ (𝐾m 𝐼))) → (((𝑄𝑀) ∘f · (𝑄𝑁))‘𝐴) = (((𝑄𝑀)‘𝐴) · ((𝑄𝑁)‘𝐴)))
4035, 37, 25, 38, 39syl22anc 838 . . 3 (𝜑 → (((𝑄𝑀) ∘f · (𝑄𝑁))‘𝐴) = (((𝑄𝑀)‘𝐴) · ((𝑄𝑁)‘𝐴)))
4113simprd 495 . . . 4 (𝜑 → ((𝑄𝑀)‘𝐴) = 𝑉)
4215simprd 495 . . . 4 (𝜑 → ((𝑄𝑁)‘𝐴) = 𝑊)
4341, 42oveq12d 7432 . . 3 (𝜑 → (((𝑄𝑀)‘𝐴) · ((𝑄𝑁)‘𝐴)) = (𝑉 · 𝑊))
4433, 40, 433eqtrd 2771 . 2 (𝜑 → ((𝑄‘(𝑀 𝑁))‘𝐴) = (𝑉 · 𝑊))
4520, 44jca 511 1 (𝜑 → ((𝑀 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 𝑁))‘𝐴) = (𝑉 · 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3469   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  f cof 7677  m cmap 8838  Basecbs 17173  s cress 17202  .rcmulr 17227  s cpws 17421  Ringcrg 20166  CRingccrg 20167   RingHom crh 20401  SubRingcsubrg 20499   mPoly cmpl 21832   evalSub ces 22009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-sup 9459  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-fzo 13654  df-seq 13993  df-hash 14316  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-0g 17416  df-gsum 17417  df-prds 17422  df-pws 17424  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-mhm 18733  df-submnd 18734  df-grp 18886  df-minusg 18887  df-sbg 18888  df-mulg 19017  df-subg 19071  df-ghm 19161  df-cntz 19261  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-srg 20120  df-ring 20168  df-cring 20169  df-rhm 20404  df-subrng 20476  df-subrg 20501  df-lmod 20738  df-lss 20809  df-lsp 20849  df-assa 21780  df-asp 21781  df-ascl 21782  df-psr 21835  df-mvr 21836  df-mpl 21837  df-evls 22011
This theorem is referenced by:  evlsmaprhm  41775
  Copyright terms: Public domain W3C validator