![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1var | Structured version Visualization version GIF version |
Description: Polynomial evaluation maps the variable to the identity function. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
evl1var.q | ⊢ 𝑂 = (eval1‘𝑅) |
evl1var.v | ⊢ 𝑋 = (var1‘𝑅) |
evl1var.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
evl1var | ⊢ (𝑅 ∈ CRing → (𝑂‘𝑋) = ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 20178 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | evl1var.v | . . . . 5 ⊢ 𝑋 = (var1‘𝑅) | |
3 | eqid 2727 | . . . . 5 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
4 | eqid 2727 | . . . . 5 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
5 | 2, 3, 4 | vr1cl 22129 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘(Poly1‘𝑅))) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑋 ∈ (Base‘(Poly1‘𝑅))) |
7 | evl1var.q | . . . 4 ⊢ 𝑂 = (eval1‘𝑅) | |
8 | eqid 2727 | . . . 4 ⊢ (1o eval 𝑅) = (1o eval 𝑅) | |
9 | evl1var.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
10 | eqid 2727 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
11 | eqid 2727 | . . . . 5 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
12 | 3, 11, 4 | ply1bas 22107 | . . . 4 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(1o mPoly 𝑅)) |
13 | 7, 8, 9, 10, 12 | evl1val 22241 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘(Poly1‘𝑅))) → (𝑂‘𝑋) = (((1o eval 𝑅)‘𝑋) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
14 | 6, 13 | mpdan 686 | . 2 ⊢ (𝑅 ∈ CRing → (𝑂‘𝑋) = (((1o eval 𝑅)‘𝑋) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
15 | df1o2 8487 | . . . . 5 ⊢ 1o = {∅} | |
16 | 9 | fvexi 6905 | . . . . 5 ⊢ 𝐵 ∈ V |
17 | 0ex 5301 | . . . . 5 ⊢ ∅ ∈ V | |
18 | eqid 2727 | . . . . 5 ⊢ (𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) = (𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) | |
19 | 15, 16, 17, 18 | mapsncnv 8905 | . . . 4 ⊢ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) = (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) |
20 | 19 | coeq2i 5857 | . . 3 ⊢ (((1o eval 𝑅)‘𝑋) ∘ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅))) = (((1o eval 𝑅)‘𝑋) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) |
21 | 9 | ressid 17218 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s 𝐵) = 𝑅) |
22 | 21 | oveq2d 7430 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → (1o mVar (𝑅 ↾s 𝐵)) = (1o mVar 𝑅)) |
23 | 22 | fveq1d 6893 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → ((1o mVar (𝑅 ↾s 𝐵))‘∅) = ((1o mVar 𝑅)‘∅)) |
24 | 2 | vr1val 22104 | . . . . . . 7 ⊢ 𝑋 = ((1o mVar 𝑅)‘∅) |
25 | 23, 24 | eqtr4di 2785 | . . . . . 6 ⊢ (𝑅 ∈ CRing → ((1o mVar (𝑅 ↾s 𝐵))‘∅) = 𝑋) |
26 | 25 | fveq2d 6895 | . . . . 5 ⊢ (𝑅 ∈ CRing → ((1o eval 𝑅)‘((1o mVar (𝑅 ↾s 𝐵))‘∅)) = ((1o eval 𝑅)‘𝑋)) |
27 | 8, 9 | evlval 22034 | . . . . . 6 ⊢ (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵) |
28 | eqid 2727 | . . . . . 6 ⊢ (1o mVar (𝑅 ↾s 𝐵)) = (1o mVar (𝑅 ↾s 𝐵)) | |
29 | eqid 2727 | . . . . . 6 ⊢ (𝑅 ↾s 𝐵) = (𝑅 ↾s 𝐵) | |
30 | 1on 8492 | . . . . . . 7 ⊢ 1o ∈ On | |
31 | 30 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 1o ∈ On) |
32 | id 22 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ CRing) | |
33 | 9 | subrgid 20505 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) |
34 | 1, 33 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝐵 ∈ (SubRing‘𝑅)) |
35 | 0lt1o 8518 | . . . . . . 7 ⊢ ∅ ∈ 1o | |
36 | 35 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ CRing → ∅ ∈ 1o) |
37 | 27, 28, 29, 9, 31, 32, 34, 36 | evlsvar 22029 | . . . . 5 ⊢ (𝑅 ∈ CRing → ((1o eval 𝑅)‘((1o mVar (𝑅 ↾s 𝐵))‘∅)) = (𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅))) |
38 | 26, 37 | eqtr3d 2769 | . . . 4 ⊢ (𝑅 ∈ CRing → ((1o eval 𝑅)‘𝑋) = (𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅))) |
39 | 38 | coeq1d 5858 | . . 3 ⊢ (𝑅 ∈ CRing → (((1o eval 𝑅)‘𝑋) ∘ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅))) = ((𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) ∘ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)))) |
40 | 20, 39 | eqtr3id 2781 | . 2 ⊢ (𝑅 ∈ CRing → (((1o eval 𝑅)‘𝑋) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = ((𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) ∘ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)))) |
41 | 15, 16, 17, 18 | mapsnf1o2 8906 | . . 3 ⊢ (𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)):(𝐵 ↑m 1o)–1-1-onto→𝐵 |
42 | f1ococnv2 6860 | . . 3 ⊢ ((𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)):(𝐵 ↑m 1o)–1-1-onto→𝐵 → ((𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) ∘ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅))) = ( I ↾ 𝐵)) | |
43 | 41, 42 | mp1i 13 | . 2 ⊢ (𝑅 ∈ CRing → ((𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅)) ∘ ◡(𝑧 ∈ (𝐵 ↑m 1o) ↦ (𝑧‘∅))) = ( I ↾ 𝐵)) |
44 | 14, 40, 43 | 3eqtrd 2771 | 1 ⊢ (𝑅 ∈ CRing → (𝑂‘𝑋) = ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∅c0 4318 {csn 4624 ↦ cmpt 5225 I cid 5569 × cxp 5670 ◡ccnv 5671 ↾ cres 5674 ∘ ccom 5676 Oncon0 6363 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 1oc1o 8473 ↑m cmap 8838 Basecbs 17173 ↾s cress 17202 Ringcrg 20166 CRingccrg 20167 SubRingcsubrg 20499 mVar cmvr 21831 mPoly cmpl 21832 eval cevl 22010 PwSer1cps1 22087 var1cv1 22088 Poly1cpl1 22089 eval1ce1 22226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-ofr 7680 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-sup 9459 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-fzo 13654 df-seq 13993 df-hash 14316 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-hom 17250 df-cco 17251 df-0g 17416 df-gsum 17417 df-prds 17422 df-pws 17424 df-mre 17559 df-mrc 17560 df-acs 17562 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-mhm 18733 df-submnd 18734 df-grp 18886 df-minusg 18887 df-sbg 18888 df-mulg 19017 df-subg 19071 df-ghm 19161 df-cntz 19261 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-srg 20120 df-ring 20168 df-cring 20169 df-rhm 20404 df-subrng 20476 df-subrg 20501 df-lmod 20738 df-lss 20809 df-lsp 20849 df-assa 21780 df-asp 21781 df-ascl 21782 df-psr 21835 df-mvr 21836 df-mpl 21837 df-opsr 21839 df-evls 22011 df-evl 22012 df-psr1 22092 df-vr1 22093 df-ply1 22094 df-evl1 22228 |
This theorem is referenced by: evl1vard 22249 evls1var 22250 pf1id 22259 fta1blem 26098 |
Copyright terms: Public domain | W3C validator |