![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eulerth | Structured version Visualization version GIF version |
Description: Euler's theorem, a generalization of Fermat's little theorem. If 𝐴 and 𝑁 are coprime, then 𝐴↑ϕ(𝑁)≡1 (mod 𝑁). This is Metamath 100 proof #10. Also called Euler-Fermat theorem, see theorem 5.17 in [ApostolNT] p. 113. (Contributed by Mario Carneiro, 28-Feb-2014.) |
Ref | Expression |
---|---|
eulerth | ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phicl 16743 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ) | |
2 | 1 | nnnn0d 12568 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ0) |
3 | hashfz1 14343 | . . . . . . 7 ⊢ ((ϕ‘𝑁) ∈ ℕ0 → (♯‘(1...(ϕ‘𝑁))) = (ϕ‘𝑁)) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (♯‘(1...(ϕ‘𝑁))) = (ϕ‘𝑁)) |
5 | dfphi2 16748 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})) | |
6 | 4, 5 | eqtrd 2767 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})) |
7 | 6 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})) |
8 | fzfi 13975 | . . . . 5 ⊢ (1...(ϕ‘𝑁)) ∈ Fin | |
9 | fzofi 13977 | . . . . . 6 ⊢ (0..^𝑁) ∈ Fin | |
10 | ssrab2 4075 | . . . . . 6 ⊢ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ⊆ (0..^𝑁) | |
11 | ssfi 9202 | . . . . . 6 ⊢ (((0..^𝑁) ∈ Fin ∧ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ⊆ (0..^𝑁)) → {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ∈ Fin) | |
12 | 9, 10, 11 | mp2an 690 | . . . . 5 ⊢ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ∈ Fin |
13 | hashen 14344 | . . . . 5 ⊢ (((1...(ϕ‘𝑁)) ∈ Fin ∧ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ∈ Fin) → ((♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) ↔ (1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})) | |
14 | 8, 12, 13 | mp2an 690 | . . . 4 ⊢ ((♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) ↔ (1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) |
15 | 7, 14 | sylib 217 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) |
16 | bren 8978 | . . 3 ⊢ ((1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ↔ ∃𝑓 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) | |
17 | 15, 16 | sylib 217 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ∃𝑓 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) |
18 | simpl 481 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) | |
19 | oveq1 7431 | . . . . 5 ⊢ (𝑘 = 𝑦 → (𝑘 gcd 𝑁) = (𝑦 gcd 𝑁)) | |
20 | 19 | eqeq1d 2729 | . . . 4 ⊢ (𝑘 = 𝑦 → ((𝑘 gcd 𝑁) = 1 ↔ (𝑦 gcd 𝑁) = 1)) |
21 | 20 | cbvrabv 3439 | . . 3 ⊢ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1} |
22 | eqid 2727 | . . 3 ⊢ (1...(ϕ‘𝑁)) = (1...(ϕ‘𝑁)) | |
23 | simpr 483 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) → 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) | |
24 | fveq2 6900 | . . . . . 6 ⊢ (𝑘 = 𝑥 → (𝑓‘𝑘) = (𝑓‘𝑥)) | |
25 | 24 | oveq2d 7440 | . . . . 5 ⊢ (𝑘 = 𝑥 → (𝐴 · (𝑓‘𝑘)) = (𝐴 · (𝑓‘𝑥))) |
26 | 25 | oveq1d 7439 | . . . 4 ⊢ (𝑘 = 𝑥 → ((𝐴 · (𝑓‘𝑘)) mod 𝑁) = ((𝐴 · (𝑓‘𝑥)) mod 𝑁)) |
27 | 26 | cbvmptv 5263 | . . 3 ⊢ (𝑘 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝑓‘𝑘)) mod 𝑁)) = (𝑥 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝑓‘𝑥)) mod 𝑁)) |
28 | 18, 21, 22, 23, 27 | eulerthlem2 16756 | . 2 ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) |
29 | 17, 28 | exlimddv 1930 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {crab 3428 ⊆ wss 3947 class class class wbr 5150 ↦ cmpt 5233 –1-1-onto→wf1o 6550 ‘cfv 6551 (class class class)co 7424 ≈ cen 8965 Fincfn 8968 0cc0 11144 1c1 11145 · cmul 11149 ℕcn 12248 ℕ0cn0 12508 ℤcz 12594 ...cfz 13522 ..^cfzo 13665 mod cmo 13872 ↑cexp 14064 ♯chash 14327 gcd cgcd 16474 ϕcphi 16738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-oadd 8495 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9471 df-inf 9472 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-n0 12509 df-xnn0 12581 df-z 12595 df-uz 12859 df-rp 13013 df-fz 13523 df-fzo 13666 df-fl 13795 df-mod 13873 df-seq 14005 df-exp 14065 df-hash 14328 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-abs 15221 df-dvds 16237 df-gcd 16475 df-phi 16740 |
This theorem is referenced by: fermltl 16758 prmdiv 16759 odzcllem 16766 odzphi 16770 vfermltl 16775 lgslem1 27248 lgsqrlem2 27298 |
Copyright terms: Public domain | W3C validator |