MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eulerth Structured version   Visualization version   GIF version

Theorem eulerth 16757
Description: Euler's theorem, a generalization of Fermat's little theorem. If 𝐴 and 𝑁 are coprime, then 𝐴↑ϕ(𝑁)≡1 (mod 𝑁). This is Metamath 100 proof #10. Also called Euler-Fermat theorem, see theorem 5.17 in [ApostolNT] p. 113. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
eulerth ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))

Proof of Theorem eulerth
Dummy variables 𝑓 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phicl 16743 . . . . . . . 8 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ)
21nnnn0d 12568 . . . . . . 7 (𝑁 ∈ ℕ → (ϕ‘𝑁) ∈ ℕ0)
3 hashfz1 14343 . . . . . . 7 ((ϕ‘𝑁) ∈ ℕ0 → (♯‘(1...(ϕ‘𝑁))) = (ϕ‘𝑁))
42, 3syl 17 . . . . . 6 (𝑁 ∈ ℕ → (♯‘(1...(ϕ‘𝑁))) = (ϕ‘𝑁))
5 dfphi2 16748 . . . . . 6 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}))
64, 5eqtrd 2767 . . . . 5 (𝑁 ∈ ℕ → (♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}))
763ad2ant1 1130 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}))
8 fzfi 13975 . . . . 5 (1...(ϕ‘𝑁)) ∈ Fin
9 fzofi 13977 . . . . . 6 (0..^𝑁) ∈ Fin
10 ssrab2 4075 . . . . . 6 {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ⊆ (0..^𝑁)
11 ssfi 9202 . . . . . 6 (((0..^𝑁) ∈ Fin ∧ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ⊆ (0..^𝑁)) → {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ∈ Fin)
129, 10, 11mp2an 690 . . . . 5 {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ∈ Fin
13 hashen 14344 . . . . 5 (((1...(ϕ‘𝑁)) ∈ Fin ∧ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ∈ Fin) → ((♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) ↔ (1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}))
148, 12, 13mp2an 690 . . . 4 ((♯‘(1...(ϕ‘𝑁))) = (♯‘{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) ↔ (1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
157, 14sylib 217 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → (1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
16 bren 8978 . . 3 ((1...(ϕ‘𝑁)) ≈ {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} ↔ ∃𝑓 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
1715, 16sylib 217 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ∃𝑓 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
18 simpl 481 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
19 oveq1 7431 . . . . 5 (𝑘 = 𝑦 → (𝑘 gcd 𝑁) = (𝑦 gcd 𝑁))
2019eqeq1d 2729 . . . 4 (𝑘 = 𝑦 → ((𝑘 gcd 𝑁) = 1 ↔ (𝑦 gcd 𝑁) = 1))
2120cbvrabv 3439 . . 3 {𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1} = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
22 eqid 2727 . . 3 (1...(ϕ‘𝑁)) = (1...(ϕ‘𝑁))
23 simpr 483 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) → 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1})
24 fveq2 6900 . . . . . 6 (𝑘 = 𝑥 → (𝑓𝑘) = (𝑓𝑥))
2524oveq2d 7440 . . . . 5 (𝑘 = 𝑥 → (𝐴 · (𝑓𝑘)) = (𝐴 · (𝑓𝑥)))
2625oveq1d 7439 . . . 4 (𝑘 = 𝑥 → ((𝐴 · (𝑓𝑘)) mod 𝑁) = ((𝐴 · (𝑓𝑥)) mod 𝑁))
2726cbvmptv 5263 . . 3 (𝑘 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝑓𝑘)) mod 𝑁)) = (𝑥 ∈ (1...(ϕ‘𝑁)) ↦ ((𝐴 · (𝑓𝑥)) mod 𝑁))
2818, 21, 22, 23, 27eulerthlem2 16756 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ∧ 𝑓:(1...(ϕ‘𝑁))–1-1-onto→{𝑘 ∈ (0..^𝑁) ∣ (𝑘 gcd 𝑁) = 1}) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
2917, 28exlimddv 1930 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑(ϕ‘𝑁)) mod 𝑁) = (1 mod 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wex 1773  wcel 2098  {crab 3428  wss 3947   class class class wbr 5150  cmpt 5233  1-1-ontowf1o 6550  cfv 6551  (class class class)co 7424  cen 8965  Fincfn 8968  0cc0 11144  1c1 11145   · cmul 11149  cn 12248  0cn0 12508  cz 12594  ...cfz 13522  ..^cfzo 13665   mod cmo 13872  cexp 14064  chash 14327   gcd cgcd 16474  ϕcphi 16738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-oadd 8495  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-inf 9472  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-n0 12509  df-xnn0 12581  df-z 12595  df-uz 12859  df-rp 13013  df-fz 13523  df-fzo 13666  df-fl 13795  df-mod 13873  df-seq 14005  df-exp 14065  df-hash 14328  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-dvds 16237  df-gcd 16475  df-phi 16740
This theorem is referenced by:  fermltl  16758  prmdiv  16759  odzcllem  16766  odzphi  16770  vfermltl  16775  lgslem1  27248  lgsqrlem2  27298
  Copyright terms: Public domain W3C validator