MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvres2 Structured version   Visualization version   GIF version

Theorem dvres2 25834
Description: Restriction of the base set of a derivative. The primary application of this theorem says that if a function is complex-differentiable then it is also real-differentiable. Unlike dvres 25833, there is no simple reverse relation relating real-differentiable functions to complex differentiability, and indeed there are functions like ℜ(𝑥) which are everywhere real-differentiable but nowhere complex-differentiable.) (Contributed by Mario Carneiro, 9-Feb-2015.)
Assertion
Ref Expression
dvres2 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝑆 D 𝐹) ↾ 𝐵) ⊆ (𝐵 D (𝐹𝐵)))

Proof of Theorem dvres2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 6008 . . 3 Rel ((𝑆 D 𝐹) ↾ 𝐵)
21a1i 11 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → Rel ((𝑆 D 𝐹) ↾ 𝐵))
3 eqid 2727 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4 eqid 2727 . . . . 5 ((TopOpen‘ℂfld) ↾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
5 eqid 2727 . . . . 5 (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ (𝐴 ∖ {𝑥}) ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
6 simp1l 1195 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝑆 ⊆ ℂ)
7 simp1r 1196 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝐹:𝐴⟶ℂ)
8 simp2l 1197 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝐴𝑆)
9 simp2r 1198 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝐵𝑆)
10 simp3r 1200 . . . . . 6 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝑥(𝑆 D 𝐹)𝑦)
116, 7, 8dvcl 25821 . . . . . 6 ((((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) ∧ 𝑥(𝑆 D 𝐹)𝑦) → 𝑦 ∈ ℂ)
1210, 11mpdan 686 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝑦 ∈ ℂ)
13 simp3l 1199 . . . . 5 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝑥𝐵)
143, 4, 5, 6, 7, 8, 9, 12, 10, 13dvres2lem 25832 . . . 4 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆) ∧ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦)) → 𝑥(𝐵 D (𝐹𝐵))𝑦)
15143expia 1119 . . 3 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝑥𝐵𝑥(𝑆 D 𝐹)𝑦) → 𝑥(𝐵 D (𝐹𝐵))𝑦))
16 vex 3473 . . . . 5 𝑦 ∈ V
1716brresi 5988 . . . 4 (𝑥((𝑆 D 𝐹) ↾ 𝐵)𝑦 ↔ (𝑥𝐵𝑥(𝑆 D 𝐹)𝑦))
18 df-br 5143 . . . 4 (𝑥((𝑆 D 𝐹) ↾ 𝐵)𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝑆 D 𝐹) ↾ 𝐵))
1917, 18bitr3i 277 . . 3 ((𝑥𝐵𝑥(𝑆 D 𝐹)𝑦) ↔ ⟨𝑥, 𝑦⟩ ∈ ((𝑆 D 𝐹) ↾ 𝐵))
20 df-br 5143 . . 3 (𝑥(𝐵 D (𝐹𝐵))𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐵 D (𝐹𝐵)))
2115, 19, 203imtr3g 295 . 2 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → (⟨𝑥, 𝑦⟩ ∈ ((𝑆 D 𝐹) ↾ 𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐵 D (𝐹𝐵))))
222, 21relssdv 5784 1 (((𝑆 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐴𝑆𝐵𝑆)) → ((𝑆 D 𝐹) ↾ 𝐵) ⊆ (𝐵 D (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2099  cdif 3941  wss 3944  {csn 4624  cop 4630   class class class wbr 5142  cmpt 5225  cres 5674  Rel wrel 5677  wf 6538  cfv 6542  (class class class)co 7414  cc 11130  cmin 11468   / cdiv 11895  t crest 17395  TopOpenctopn 17396  fldccnfld 21272   D cdv 25785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9428  df-sup 9459  df-inf 9460  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-fz 13511  df-seq 13993  df-exp 14053  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17109  df-slot 17144  df-ndx 17156  df-base 17174  df-plusg 17239  df-mulr 17240  df-starv 17241  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-rest 17397  df-topn 17398  df-topgen 17418  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cld 22916  df-ntr 22917  df-cls 22918  df-cnp 23125  df-xms 24219  df-ms 24220  df-limc 25788  df-dv 25789
This theorem is referenced by:  dvres3  25835  dvres3a  25836
  Copyright terms: Public domain W3C validator