MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdpr Structured version   Visualization version   GIF version

Theorem dmdprdpr 20011
Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dmdprdpr.z 𝑍 = (Cntz‘𝐺)
dmdprdpr.0 0 = (0g𝐺)
dmdprdpr.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
dmdprdpr.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
Assertion
Ref Expression
dmdprdpr (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ (𝑆 ⊆ (𝑍𝑇) ∧ (𝑆𝑇) = { 0 })))

Proof of Theorem dmdprdpr
StepHypRef Expression
1 0ex 5309 . . . . . 6 ∅ ∈ V
2 dmdprdpr.s . . . . . 6 (𝜑𝑆 ∈ (SubGrp‘𝐺))
3 dprdsn 19998 . . . . . 6 ((∅ ∈ V ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨∅, 𝑆⟩} ∧ (𝐺 DProd {⟨∅, 𝑆⟩}) = 𝑆))
41, 2, 3sylancr 585 . . . . 5 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩} ∧ (𝐺 DProd {⟨∅, 𝑆⟩}) = 𝑆))
54simpld 493 . . . 4 (𝜑𝐺dom DProd {⟨∅, 𝑆⟩})
6 dmdprdpr.t . . . . . . . 8 (𝜑𝑇 ∈ (SubGrp‘𝐺))
7 xpscf 17552 . . . . . . . 8 ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}:2o⟶(SubGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)))
82, 6, 7sylanbrc 581 . . . . . . 7 (𝜑 → {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}:2o⟶(SubGrp‘𝐺))
98ffnd 6726 . . . . . 6 (𝜑 → {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} Fn 2o)
101prid1 4769 . . . . . . 7 ∅ ∈ {∅, 1o}
11 df2o3 8499 . . . . . . 7 2o = {∅, 1o}
1210, 11eleqtrri 2827 . . . . . 6 ∅ ∈ 2o
13 fnressn 7171 . . . . . 6 (({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} Fn 2o ∧ ∅ ∈ 2o) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩})
149, 12, 13sylancl 584 . . . . 5 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩})
15 fvpr0o 17546 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝐺) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅) = 𝑆)
162, 15syl 17 . . . . . . 7 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅) = 𝑆)
1716opeq2d 4883 . . . . . 6 (𝜑 → ⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩ = ⟨∅, 𝑆⟩)
1817sneqd 4642 . . . . 5 (𝜑 → {⟨∅, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘∅)⟩} = {⟨∅, 𝑆⟩})
1914, 18eqtrd 2767 . . . 4 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) = {⟨∅, 𝑆⟩})
205, 19breqtrrd 5178 . . 3 (𝜑𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}))
21 1on 8503 . . . . . 6 1o ∈ On
22 dprdsn 19998 . . . . . 6 ((1o ∈ On ∧ 𝑇 ∈ (SubGrp‘𝐺)) → (𝐺dom DProd {⟨1o, 𝑇⟩} ∧ (𝐺 DProd {⟨1o, 𝑇⟩}) = 𝑇))
2321, 6, 22sylancr 585 . . . . 5 (𝜑 → (𝐺dom DProd {⟨1o, 𝑇⟩} ∧ (𝐺 DProd {⟨1o, 𝑇⟩}) = 𝑇))
2423simpld 493 . . . 4 (𝜑𝐺dom DProd {⟨1o, 𝑇⟩})
25 1oex 8501 . . . . . . . 8 1o ∈ V
2625prid2 4770 . . . . . . 7 1o ∈ {∅, 1o}
2726, 11eleqtrri 2827 . . . . . 6 1o ∈ 2o
28 fnressn 7171 . . . . . 6 (({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} Fn 2o ∧ 1o ∈ 2o) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩})
299, 27, 28sylancl 584 . . . . 5 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩})
30 fvpr1o 17547 . . . . . . . 8 (𝑇 ∈ (SubGrp‘𝐺) → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o) = 𝑇)
316, 30syl 17 . . . . . . 7 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o) = 𝑇)
3231opeq2d 4883 . . . . . 6 (𝜑 → ⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩ = ⟨1o, 𝑇⟩)
3332sneqd 4642 . . . . 5 (𝜑 → {⟨1o, ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩}‘1o)⟩} = {⟨1o, 𝑇⟩})
3429, 33eqtrd 2767 . . . 4 (𝜑 → ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}) = {⟨1o, 𝑇⟩})
3524, 34breqtrrd 5178 . . 3 (𝜑𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))
36 1n0 8513 . . . . . . . . 9 1o ≠ ∅
3736necomi 2991 . . . . . . . 8 ∅ ≠ 1o
38 disjsn2 4719 . . . . . . . 8 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
3937, 38mp1i 13 . . . . . . 7 (𝜑 → ({∅} ∩ {1o}) = ∅)
40 df-pr 4633 . . . . . . . . 9 {∅, 1o} = ({∅} ∪ {1o})
4111, 40eqtri 2755 . . . . . . . 8 2o = ({∅} ∪ {1o})
4241a1i 11 . . . . . . 7 (𝜑 → 2o = ({∅} ∪ {1o}))
43 dmdprdpr.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
44 dmdprdpr.0 . . . . . . 7 0 = (0g𝐺)
458, 39, 42, 43, 44dmdprdsplit 20009 . . . . . 6 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ ((𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) ∧ 𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) ∧ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 })))
46 3anass 1092 . . . . . 6 (((𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) ∧ 𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) ∧ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 }) ↔ ((𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) ∧ 𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 })))
4745, 46bitrdi 286 . . . . 5 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ ((𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) ∧ 𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 }))))
4847baibd 538 . . . 4 ((𝜑 ∧ (𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) ∧ 𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 })))
4948ex 411 . . 3 (𝜑 → ((𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅}) ∧ 𝐺dom DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 }))))
5020, 35, 49mp2and 697 . 2 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 })))
5119oveq2d 7440 . . . . 5 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) = (𝐺 DProd {⟨∅, 𝑆⟩}))
524simprd 494 . . . . 5 (𝜑 → (𝐺 DProd {⟨∅, 𝑆⟩}) = 𝑆)
5351, 52eqtrd 2767 . . . 4 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) = 𝑆)
5434oveq2d 7440 . . . . . 6 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) = (𝐺 DProd {⟨1o, 𝑇⟩}))
5523simprd 494 . . . . . 6 (𝜑 → (𝐺 DProd {⟨1o, 𝑇⟩}) = 𝑇)
5654, 55eqtrd 2767 . . . . 5 (𝜑 → (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o})) = 𝑇)
5756fveq2d 6904 . . . 4 (𝜑 → (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = (𝑍𝑇))
5853, 57sseq12d 4013 . . 3 (𝜑 → ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ↔ 𝑆 ⊆ (𝑍𝑇)))
5953, 56ineq12d 4213 . . . 4 (𝜑 → ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = (𝑆𝑇))
6059eqeq1d 2729 . . 3 (𝜑 → (((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 } ↔ (𝑆𝑇) = { 0 }))
6158, 60anbi12d 630 . 2 (𝜑 → (((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ⊆ (𝑍‘(𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) ∧ ((𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {∅})) ∩ (𝐺 DProd ({⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↾ {1o}))) = { 0 }) ↔ (𝑆 ⊆ (𝑍𝑇) ∧ (𝑆𝑇) = { 0 })))
6250, 61bitrd 278 1 (𝜑 → (𝐺dom DProd {⟨∅, 𝑆⟩, ⟨1o, 𝑇⟩} ↔ (𝑆 ⊆ (𝑍𝑇) ∧ (𝑆𝑇) = { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2936  Vcvv 3471  cun 3945  cin 3946  wss 3947  c0 4324  {csn 4630  {cpr 4632  cop 4636   class class class wbr 5150  dom cdm 5680  cres 5682  Oncon0 6372   Fn wfn 6546  wf 6547  cfv 6551  (class class class)co 7424  1oc1o 8484  2oc2o 8485  0gc0g 17426  SubGrpcsubg 19080  Cntzccntz 19271   DProd cdprd 19955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-iin 5001  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7689  df-om 7875  df-1st 7997  df-2nd 7998  df-supp 8170  df-tpos 8236  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-2o 8492  df-er 8729  df-map 8851  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fsupp 9392  df-oi 9539  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-2 12311  df-n0 12509  df-z 12595  df-uz 12859  df-fz 13523  df-fzo 13666  df-seq 14005  df-hash 14328  df-sets 17138  df-slot 17156  df-ndx 17168  df-base 17186  df-ress 17215  df-plusg 17251  df-0g 17428  df-gsum 17429  df-mre 17571  df-mrc 17572  df-acs 17574  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-mhm 18745  df-submnd 18746  df-grp 18898  df-minusg 18899  df-sbg 18900  df-mulg 19029  df-subg 19083  df-ghm 19173  df-gim 19218  df-cntz 19273  df-oppg 19302  df-lsm 19596  df-cmn 19742  df-dprd 19957
This theorem is referenced by:  dprdpr  20012
  Copyright terms: Public domain W3C validator