![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > baibd | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
baibd.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
baibd | ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baibd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
2 | ibar 528 | . . 3 ⊢ (𝜒 → (𝜃 ↔ (𝜒 ∧ 𝜃))) | |
3 | 2 | bicomd 222 | . 2 ⊢ (𝜒 → ((𝜒 ∧ 𝜃) ↔ 𝜃)) |
4 | 1, 3 | sylan9bb 509 | 1 ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: rbaibd 540 pw2f1olem 9092 eluz 12858 elicc4 13415 s111 14589 limsupgle 15445 lo1resb 15532 o1resb 15534 isercolllem2 15636 divalgmodcl 16375 ismri2 17603 acsfiel2 17626 eqglact 19125 eqgid 19126 cntzel 19265 dprdsubg 19972 subgdmdprd 19982 dprd2da 19990 dmdprdpr 19997 issubrg3 20528 ishil2 21640 obslbs 21651 iscld2 22919 isperf3 23044 cncnp2 23172 cnnei 23173 trfbas2 23734 flimrest 23874 flfnei 23882 fclsrest 23915 tsmssubm 24034 isnghm2 24628 isnghm3 24629 isnmhm2 24656 iscfil2 25181 caucfil 25198 ellimc2 25793 cnlimc 25804 lhop1 25934 dvfsumlem1 25947 fsumharmonic 26931 fsumvma 27133 fsumvma2 27134 vmasum 27136 chpchtsum 27139 chpub 27140 rpvmasum2 27432 dchrisum0lem1 27436 dirith 27449 uvtx2vtx1edg 29198 uvtx2vtx1edgb 29199 iscplgrnb 29216 frgr3v 30072 adjeu 31686 suppiniseg 32450 suppss3 32490 nndiffz1 32538 islinds5 33019 fsumcvg4 33487 qqhval2lem 33518 indpreima 33580 eulerpartlemf 33926 elorvc 34015 hashreprin 34188 neibastop3 35782 relowlpssretop 36779 sstotbnd2 37182 isbnd3b 37193 lshpkr 38526 isat2 38696 islln4 38917 islpln4 38941 islvol4 38984 islhp2 39407 pw2f1o2val2 42383 rfcnpre1 44304 rfcnpre2 44316 joindm3 47911 meetdm3 47913 catprsc 47942 |
Copyright terms: Public domain | W3C validator |