MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgradd2 Structured version   Visualization version   GIF version

Theorem dgradd2 26190
Description: The degree of a sum of polynomials of unequal degrees is the degree of the larger polynomial. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
dgradd.1 𝑀 = (deg‘𝐹)
dgradd.2 𝑁 = (deg‘𝐺)
Assertion
Ref Expression
dgradd2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) = 𝑁)

Proof of Theorem dgradd2
StepHypRef Expression
1 plyaddcl 26141 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (𝐹f + 𝐺) ∈ (Poly‘ℂ))
213adant3 1130 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (𝐹f + 𝐺) ∈ (Poly‘ℂ))
3 dgrcl 26154 . . . . 5 ((𝐹f + 𝐺) ∈ (Poly‘ℂ) → (deg‘(𝐹f + 𝐺)) ∈ ℕ0)
42, 3syl 17 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) ∈ ℕ0)
54nn0red 12555 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) ∈ ℝ)
6 dgradd.2 . . . . . . 7 𝑁 = (deg‘𝐺)
7 dgrcl 26154 . . . . . . 7 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
86, 7eqeltrid 2832 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
983ad2ant2 1132 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℕ0)
109nn0red 12555 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℝ)
11 dgradd.1 . . . . . . 7 𝑀 = (deg‘𝐹)
12 dgrcl 26154 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
1311, 12eqeltrid 2832 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝑀 ∈ ℕ0)
14133ad2ant1 1131 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℕ0)
1514nn0red 12555 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℝ)
1610, 15ifcld 4570 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℝ)
1711, 6dgradd 26189 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (deg‘(𝐹f + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))
18173adant3 1130 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) ≤ if(𝑀𝑁, 𝑁, 𝑀))
1910leidd 11802 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁𝑁)
20 simp3 1136 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁)
2115, 10, 20ltled 11384 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑀𝑁)
22 breq1 5145 . . . . 5 (𝑁 = if(𝑀𝑁, 𝑁, 𝑀) → (𝑁𝑁 ↔ if(𝑀𝑁, 𝑁, 𝑀) ≤ 𝑁))
23 breq1 5145 . . . . 5 (𝑀 = if(𝑀𝑁, 𝑁, 𝑀) → (𝑀𝑁 ↔ if(𝑀𝑁, 𝑁, 𝑀) ≤ 𝑁))
2422, 23ifboth 4563 . . . 4 ((𝑁𝑁𝑀𝑁) → if(𝑀𝑁, 𝑁, 𝑀) ≤ 𝑁)
2519, 21, 24syl2anc 583 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → if(𝑀𝑁, 𝑁, 𝑀) ≤ 𝑁)
265, 16, 10, 18, 25letrd 11393 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) ≤ 𝑁)
27 eqid 2727 . . . . . . . 8 (coeff‘𝐹) = (coeff‘𝐹)
28 eqid 2727 . . . . . . . 8 (coeff‘𝐺) = (coeff‘𝐺)
2927, 28coeadd 26172 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆)) → (coeff‘(𝐹f + 𝐺)) = ((coeff‘𝐹) ∘f + (coeff‘𝐺)))
30293adant3 1130 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘(𝐹f + 𝐺)) = ((coeff‘𝐹) ∘f + (coeff‘𝐺)))
3130fveq1d 6893 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘(𝐹f + 𝐺))‘𝑁) = (((coeff‘𝐹) ∘f + (coeff‘𝐺))‘𝑁))
3227coef3 26153 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
33323ad2ant1 1131 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘𝐹):ℕ0⟶ℂ)
3433ffnd 6717 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘𝐹) Fn ℕ0)
3528coef3 26153 . . . . . . . . 9 (𝐺 ∈ (Poly‘𝑆) → (coeff‘𝐺):ℕ0⟶ℂ)
36353ad2ant2 1132 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘𝐺):ℕ0⟶ℂ)
3736ffnd 6717 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (coeff‘𝐺) Fn ℕ0)
38 nn0ex 12500 . . . . . . . 8 0 ∈ V
3938a1i 11 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ℕ0 ∈ V)
40 inidm 4214 . . . . . . 7 (ℕ0 ∩ ℕ0) = ℕ0
4115, 10ltnled 11383 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (𝑀 < 𝑁 ↔ ¬ 𝑁𝑀))
4220, 41mpbid 231 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ¬ 𝑁𝑀)
43 simp1 1134 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝐹 ∈ (Poly‘𝑆))
4427, 11dgrub 26155 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝐹)‘𝑁) ≠ 0) → 𝑁𝑀)
45443expia 1119 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → (((coeff‘𝐹)‘𝑁) ≠ 0 → 𝑁𝑀))
4643, 9, 45syl2anc 583 . . . . . . . . . 10 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (((coeff‘𝐹)‘𝑁) ≠ 0 → 𝑁𝑀))
4746necon1bd 2953 . . . . . . . . 9 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (¬ 𝑁𝑀 → ((coeff‘𝐹)‘𝑁) = 0))
4842, 47mpd 15 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘𝐹)‘𝑁) = 0)
4948adantr 480 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐹)‘𝑁) = 0)
50 eqidd 2728 . . . . . . 7 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) ∧ 𝑁 ∈ ℕ0) → ((coeff‘𝐺)‘𝑁) = ((coeff‘𝐺)‘𝑁))
5134, 37, 39, 39, 40, 49, 50ofval 7690 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) ∧ 𝑁 ∈ ℕ0) → (((coeff‘𝐹) ∘f + (coeff‘𝐺))‘𝑁) = (0 + ((coeff‘𝐺)‘𝑁)))
529, 51mpdan 686 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (((coeff‘𝐹) ∘f + (coeff‘𝐺))‘𝑁) = (0 + ((coeff‘𝐺)‘𝑁)))
5336, 9ffvelcdmd 7089 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘𝐺)‘𝑁) ∈ ℂ)
5453addlidd 11437 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (0 + ((coeff‘𝐺)‘𝑁)) = ((coeff‘𝐺)‘𝑁))
5531, 52, 543eqtrd 2771 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘(𝐹f + 𝐺))‘𝑁) = ((coeff‘𝐺)‘𝑁))
56 simp2 1135 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝐺 ∈ (Poly‘𝑆))
57 0red 11239 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 0 ∈ ℝ)
5814nn0ge0d 12557 . . . . . . 7 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 0 ≤ 𝑀)
5957, 15, 10, 58, 20lelttrd 11394 . . . . . 6 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 0 < 𝑁)
6059gt0ne0d 11800 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁 ≠ 0)
616, 28dgreq0 26187 . . . . . . 7 (𝐺 ∈ (Poly‘𝑆) → (𝐺 = 0𝑝 ↔ ((coeff‘𝐺)‘𝑁) = 0))
62 fveq2 6891 . . . . . . . 8 (𝐺 = 0𝑝 → (deg‘𝐺) = (deg‘0𝑝))
63 dgr0 26184 . . . . . . . . 9 (deg‘0𝑝) = 0
6463eqcomi 2736 . . . . . . . 8 0 = (deg‘0𝑝)
6562, 6, 643eqtr4g 2792 . . . . . . 7 (𝐺 = 0𝑝𝑁 = 0)
6661, 65syl6bir 254 . . . . . 6 (𝐺 ∈ (Poly‘𝑆) → (((coeff‘𝐺)‘𝑁) = 0 → 𝑁 = 0))
6766necon3d 2956 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → (𝑁 ≠ 0 → ((coeff‘𝐺)‘𝑁) ≠ 0))
6856, 60, 67sylc 65 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘𝐺)‘𝑁) ≠ 0)
6955, 68eqnetrd 3003 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((coeff‘(𝐹f + 𝐺))‘𝑁) ≠ 0)
70 eqid 2727 . . . 4 (coeff‘(𝐹f + 𝐺)) = (coeff‘(𝐹f + 𝐺))
71 eqid 2727 . . . 4 (deg‘(𝐹f + 𝐺)) = (deg‘(𝐹f + 𝐺))
7270, 71dgrub 26155 . . 3 (((𝐹f + 𝐺) ∈ (Poly‘ℂ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘(𝐹f + 𝐺))‘𝑁) ≠ 0) → 𝑁 ≤ (deg‘(𝐹f + 𝐺)))
732, 9, 69, 72syl3anc 1369 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → 𝑁 ≤ (deg‘(𝐹f + 𝐺)))
745, 10letri3d 11378 . 2 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → ((deg‘(𝐹f + 𝐺)) = 𝑁 ↔ ((deg‘(𝐹f + 𝐺)) ≤ 𝑁𝑁 ≤ (deg‘(𝐹f + 𝐺)))))
7526, 73, 74mpbir2and 712 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝑀 < 𝑁) → (deg‘(𝐹f + 𝐺)) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  Vcvv 3469  ifcif 4524   class class class wbr 5142  wf 6538  cfv 6542  (class class class)co 7414  f cof 7677  cc 11128  cr 11129  0cc0 11130   + caddc 11133   < clt 11270  cle 11271  0cn0 12494  0𝑝c0p 25585  Polycply 26105  coeffccoe 26107  degcdgr 26108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-pm 8839  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-inf 9458  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-fz 13509  df-fzo 13652  df-fl 13781  df-seq 13991  df-exp 14051  df-hash 14314  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-clim 15456  df-rlim 15457  df-sum 15657  df-0p 25586  df-ply 26109  df-coe 26111  df-dgr 26112
This theorem is referenced by:  dgrcolem2  26196  plyremlem  26226
  Copyright terms: Public domain W3C validator