![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cotrgOLD | Structured version Visualization version GIF version |
Description: Obsolete version of cotrg 6116 as of 29-Dec-2024. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 6119. (Revised by Richard Penner, 24-Dec-2019.) (Proof shortened by SN, 19-Dec-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cotrgOLD | ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 6115 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
2 | ssrel3 5790 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) → ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧)) |
4 | vex 3475 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | vex 3475 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
6 | 4, 5 | brco 5875 | . . . . . . 7 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑧 ↔ ∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧)) |
7 | 6 | imbi1i 348 | . . . . . 6 ⊢ ((𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
8 | 19.23v 1937 | . . . . . 6 ⊢ (∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ (∃𝑦(𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | |
9 | 7, 8 | bitr4i 277 | . . . . 5 ⊢ ((𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
10 | 9 | albii 1813 | . . . 4 ⊢ (∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑧∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
11 | alcom 2148 | . . . 4 ⊢ (∀𝑧∀𝑦((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧) ↔ ∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) | |
12 | 10, 11 | bitri 274 | . . 3 ⊢ (∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
13 | 12 | albii 1813 | . 2 ⊢ (∀𝑥∀𝑧(𝑥(𝐴 ∘ 𝐵)𝑧 → 𝑥𝐶𝑧) ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
14 | 3, 13 | bitri 274 | 1 ⊢ ((𝐴 ∘ 𝐵) ⊆ 𝐶 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝐵𝑦 ∧ 𝑦𝐴𝑧) → 𝑥𝐶𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1531 ∃wex 1773 ⊆ wss 3947 class class class wbr 5150 ∘ ccom 5684 Rel wrel 5685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-11 2146 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5151 df-opab 5213 df-xp 5686 df-rel 5687 df-co 5689 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |