![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brco | Structured version Visualization version GIF version |
Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
opelco.1 | ⊢ 𝐴 ∈ V |
opelco.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brco | ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelco.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelco.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | brcog 5869 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1774 ∈ wcel 2099 Vcvv 3471 class class class wbr 5148 ∘ ccom 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-co 5687 |
This theorem is referenced by: opelco 5874 cnvco 5888 cotrg 6113 cotrgOLD 6114 resco 6254 imaco 6255 rnco 6256 coass 6269 dfpo2 6300 dffv2 6993 foeqcnvco 7309 f1eqcocnv 7310 f1eqcocnvOLD 7311 ttrclss 9744 rtrclreclem3 15040 imasleval 17523 ustuqtop4 24162 metustexhalf 24478 dftr6 35345 coep 35346 coepr 35347 brtxp 35476 pprodss4v 35480 brpprod 35481 sscoid 35509 elfuns 35511 brimg 35533 brapply 35534 brcup 35535 brcap 35536 brsuccf 35537 funpartlem 35538 brrestrict 35545 dfrecs2 35546 dfrdg4 35547 cnvssco 43036 |
Copyright terms: Public domain | W3C validator |