![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cosbnd | Structured version Visualization version GIF version |
Description: The cosine of a real number lies between -1 and 1. Equation 18 of [Gleason] p. 311. (Contributed by NM, 16-Jan-2006.) |
Ref | Expression |
---|---|
cosbnd | ⊢ (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resincl 16108 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ) | |
2 | 1 | sqge0d 14125 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 0 ≤ ((sin‘𝐴)↑2)) |
3 | recoscl 16109 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ) | |
4 | 3 | resqcld 14113 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ∈ ℝ) |
5 | 1 | resqcld 14113 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ∈ ℝ) |
6 | 4, 5 | addge02d 11825 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 ≤ ((sin‘𝐴)↑2) ↔ ((cos‘𝐴)↑2) ≤ (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))) |
7 | 2, 6 | mpbid 231 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ≤ (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) |
8 | recn 11220 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
9 | sincossq 16144 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) |
11 | sq1 14182 | . . . . 5 ⊢ (1↑2) = 1 | |
12 | 10, 11 | eqtr4di 2785 | . . . 4 ⊢ (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (1↑2)) |
13 | 7, 12 | breqtrd 5168 | . . 3 ⊢ (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ≤ (1↑2)) |
14 | 1re 11236 | . . . . . 6 ⊢ 1 ∈ ℝ | |
15 | 0le1 11759 | . . . . . 6 ⊢ 0 ≤ 1 | |
16 | lenegsq 15291 | . . . . . 6 ⊢ (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (((cos‘𝐴) ≤ 1 ∧ -(cos‘𝐴) ≤ 1) ↔ ((cos‘𝐴)↑2) ≤ (1↑2))) | |
17 | 14, 15, 16 | mp3an23 1450 | . . . . 5 ⊢ ((cos‘𝐴) ∈ ℝ → (((cos‘𝐴) ≤ 1 ∧ -(cos‘𝐴) ≤ 1) ↔ ((cos‘𝐴)↑2) ≤ (1↑2))) |
18 | lenegcon1 11740 | . . . . . . 7 ⊢ (((cos‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → (-(cos‘𝐴) ≤ 1 ↔ -1 ≤ (cos‘𝐴))) | |
19 | 14, 18 | mpan2 690 | . . . . . 6 ⊢ ((cos‘𝐴) ∈ ℝ → (-(cos‘𝐴) ≤ 1 ↔ -1 ≤ (cos‘𝐴))) |
20 | 19 | anbi2d 628 | . . . . 5 ⊢ ((cos‘𝐴) ∈ ℝ → (((cos‘𝐴) ≤ 1 ∧ -(cos‘𝐴) ≤ 1) ↔ ((cos‘𝐴) ≤ 1 ∧ -1 ≤ (cos‘𝐴)))) |
21 | 17, 20 | bitr3d 281 | . . . 4 ⊢ ((cos‘𝐴) ∈ ℝ → (((cos‘𝐴)↑2) ≤ (1↑2) ↔ ((cos‘𝐴) ≤ 1 ∧ -1 ≤ (cos‘𝐴)))) |
22 | 3, 21 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℝ → (((cos‘𝐴)↑2) ≤ (1↑2) ↔ ((cos‘𝐴) ≤ 1 ∧ -1 ≤ (cos‘𝐴)))) |
23 | 13, 22 | mpbid 231 | . 2 ⊢ (𝐴 ∈ ℝ → ((cos‘𝐴) ≤ 1 ∧ -1 ≤ (cos‘𝐴))) |
24 | 23 | ancomd 461 | 1 ⊢ (𝐴 ∈ ℝ → (-1 ≤ (cos‘𝐴) ∧ (cos‘𝐴) ≤ 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 ℂcc 11128 ℝcr 11129 0cc0 11130 1c1 11131 + caddc 11133 ≤ cle 11271 -cneg 11467 2c2 12289 ↑cexp 14050 sincsin 16031 cosccos 16032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-pm 8839 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-inf 9458 df-oi 9525 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-n0 12495 df-z 12581 df-uz 12845 df-rp 12999 df-ico 13354 df-fz 13509 df-fzo 13652 df-fl 13781 df-seq 13991 df-exp 14051 df-fac 14257 df-bc 14286 df-hash 14314 df-shft 15038 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-limsup 15439 df-clim 15456 df-rlim 15457 df-sum 15657 df-ef 16035 df-sin 16037 df-cos 16038 |
This theorem is referenced by: cosbnd2 16151 cos02pilt1 26447 sin2h 37018 cos2h 37019 tan2h 37020 abscosbd 44583 |
Copyright terms: Public domain | W3C validator |