![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climmulc2 | Structured version Visualization version GIF version |
Description: Limit of a sequence multiplied by a constant 𝐶. Corollary 12-2.2 of [Gleason] p. 171. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.) |
Ref | Expression |
---|---|
climadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climadd.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climaddc1.5 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
climaddc1.6 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climaddc1.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climmulc2.h | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) |
Ref | Expression |
---|---|
climmulc2 | ⊢ (𝜑 → 𝐺 ⇝ (𝐶 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climadd.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climadd.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climaddc1.5 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | 0z 12591 | . . 3 ⊢ 0 ∈ ℤ | |
5 | uzssz 12865 | . . . 4 ⊢ (ℤ≥‘0) ⊆ ℤ | |
6 | zex 12589 | . . . 4 ⊢ ℤ ∈ V | |
7 | 5, 6 | climconst2 15516 | . . 3 ⊢ ((𝐶 ∈ ℂ ∧ 0 ∈ ℤ) → (ℤ × {𝐶}) ⇝ 𝐶) |
8 | 3, 4, 7 | sylancl 585 | . 2 ⊢ (𝜑 → (ℤ × {𝐶}) ⇝ 𝐶) |
9 | climaddc1.6 | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
10 | climadd.4 | . 2 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
11 | eluzelz 12854 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℤ) | |
12 | 11, 1 | eleq2s 2846 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
13 | fvconst2g 7208 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝑘 ∈ ℤ) → ((ℤ × {𝐶})‘𝑘) = 𝐶) | |
14 | 3, 12, 13 | syl2an 595 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((ℤ × {𝐶})‘𝑘) = 𝐶) |
15 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐶 ∈ ℂ) |
16 | 14, 15 | eqeltrd 2828 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((ℤ × {𝐶})‘𝑘) ∈ ℂ) |
17 | climaddc1.7 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
18 | climmulc2.h | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐶 · (𝐹‘𝑘))) | |
19 | 14 | oveq1d 7429 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((ℤ × {𝐶})‘𝑘) · (𝐹‘𝑘)) = (𝐶 · (𝐹‘𝑘))) |
20 | 18, 19 | eqtr4d 2770 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (((ℤ × {𝐶})‘𝑘) · (𝐹‘𝑘))) |
21 | 1, 2, 8, 9, 10, 16, 17, 20 | climmul 15601 | 1 ⊢ (𝜑 → 𝐺 ⇝ (𝐶 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {csn 4624 class class class wbr 5142 × cxp 5670 ‘cfv 6542 (class class class)co 7414 ℂcc 11128 0cc0 11130 · cmul 11135 ℤcz 12580 ℤ≥cuz 12844 ⇝ cli 15452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-sup 9457 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-n0 12495 df-z 12581 df-uz 12845 df-rp 12999 df-seq 13991 df-exp 14051 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-clim 15456 |
This theorem is referenced by: isermulc2 15628 geolim 15840 geo2lim 15845 clim2prod 15858 clim2div 15859 itg1climres 25631 itg2monolem1 25667 circum 35214 faclimlem2 35274 geomcau 37167 radcnvrat 43674 wallispi 45381 stirlinglem1 45385 stirlinglem7 45391 stirlinglem15 45399 |
Copyright terms: Public domain | W3C validator |