Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf2mpt Structured version   Visualization version   GIF version

Theorem climinf2mpt 45025
Description: A bounded below, monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climinf2mpt.p 𝑘𝜑
climinf2mpt.j 𝑗𝜑
climinf2mpt.m (𝜑𝑀 ∈ ℤ)
climinf2mpt.z 𝑍 = (ℤ𝑀)
climinf2mpt.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
climinf2mpt.c (𝑘 = 𝑗𝐵 = 𝐶)
climinf2mpt.l ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵)
climinf2mpt.e (𝜑 → (𝑘𝑍𝐵) ∈ dom ⇝ )
Assertion
Ref Expression
climinf2mpt (𝜑 → (𝑘𝑍𝐵) ⇝ inf(ran (𝑘𝑍𝐵), ℝ*, < ))
Distinct variable groups:   𝐵,𝑗   𝐶,𝑘   𝑗,𝑍,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐵(𝑘)   𝐶(𝑗)   𝑀(𝑗,𝑘)

Proof of Theorem climinf2mpt
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1910 . 2 𝑖𝜑
2 nfcv 2898 . 2 𝑖(𝑘𝑍𝐵)
3 climinf2mpt.z . 2 𝑍 = (ℤ𝑀)
4 climinf2mpt.m . 2 (𝜑𝑀 ∈ ℤ)
5 climinf2mpt.p . . 3 𝑘𝜑
6 climinf2mpt.b . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ)
75, 6fmptd2f 44532 . 2 (𝜑 → (𝑘𝑍𝐵):𝑍⟶ℝ)
8 nfv 1910 . . . . . . 7 𝑘 𝑖𝑍
95, 8nfan 1895 . . . . . 6 𝑘(𝜑𝑖𝑍)
10 nfv 1910 . . . . . 6 𝑘(𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶
119, 10nfim 1892 . . . . 5 𝑘((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶)
12 eleq1 2816 . . . . . . 7 (𝑘 = 𝑖 → (𝑘𝑍𝑖𝑍))
1312anbi2d 628 . . . . . 6 (𝑘 = 𝑖 → ((𝜑𝑘𝑍) ↔ (𝜑𝑖𝑍)))
14 oveq1 7421 . . . . . . . 8 (𝑘 = 𝑖 → (𝑘 + 1) = (𝑖 + 1))
1514csbeq1d 3893 . . . . . . 7 (𝑘 = 𝑖(𝑘 + 1) / 𝑗𝐶 = (𝑖 + 1) / 𝑗𝐶)
16 eqidd 2728 . . . . . . . 8 (𝑘 = 𝑖𝐵 = 𝐵)
17 csbcow 3904 . . . . . . . . . . 11 𝑘 / 𝑗𝑗 / 𝑘𝐵 = 𝑘 / 𝑘𝐵
18 csbid 3902 . . . . . . . . . . 11 𝑘 / 𝑘𝐵 = 𝐵
1917, 18eqtr2i 2756 . . . . . . . . . 10 𝐵 = 𝑘 / 𝑗𝑗 / 𝑘𝐵
20 nfcv 2898 . . . . . . . . . . . . 13 𝑗𝐵
21 nfcv 2898 . . . . . . . . . . . . 13 𝑘𝐶
22 climinf2mpt.c . . . . . . . . . . . . 13 (𝑘 = 𝑗𝐵 = 𝐶)
2320, 21, 22cbvcsbw 3899 . . . . . . . . . . . 12 𝑗 / 𝑘𝐵 = 𝑗 / 𝑗𝐶
24 csbid 3902 . . . . . . . . . . . 12 𝑗 / 𝑗𝐶 = 𝐶
2523, 24eqtri 2755 . . . . . . . . . . 11 𝑗 / 𝑘𝐵 = 𝐶
2625csbeq2i 3897 . . . . . . . . . 10 𝑘 / 𝑗𝑗 / 𝑘𝐵 = 𝑘 / 𝑗𝐶
2719, 26eqtri 2755 . . . . . . . . 9 𝐵 = 𝑘 / 𝑗𝐶
2827a1i 11 . . . . . . . 8 (𝑘 = 𝑖𝐵 = 𝑘 / 𝑗𝐶)
29 csbeq1 3892 . . . . . . . 8 (𝑘 = 𝑖𝑘 / 𝑗𝐶 = 𝑖 / 𝑗𝐶)
3016, 28, 293eqtrd 2771 . . . . . . 7 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑗𝐶)
3115, 30breq12d 5155 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 + 1) / 𝑗𝐶𝐵(𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶))
3213, 31imbi12d 344 . . . . 5 (𝑘 = 𝑖 → (((𝜑𝑘𝑍) → (𝑘 + 1) / 𝑗𝐶𝐵) ↔ ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶)))
33 simpl 482 . . . . . 6 ((𝜑𝑘𝑍) → 𝜑)
34 simpr 484 . . . . . 6 ((𝜑𝑘𝑍) → 𝑘𝑍)
35 eqidd 2728 . . . . . 6 ((𝜑𝑘𝑍) → (𝑘 + 1) = (𝑘 + 1))
36 climinf2mpt.j . . . . . . . . 9 𝑗𝜑
37 nfv 1910 . . . . . . . . 9 𝑗 𝑘𝑍
38 nfv 1910 . . . . . . . . 9 𝑗(𝑘 + 1) = (𝑘 + 1)
3936, 37, 38nf3an 1897 . . . . . . . 8 𝑗(𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1))
40 nfcsb1v 3914 . . . . . . . . 9 𝑗(𝑘 + 1) / 𝑗𝐶
41 nfcv 2898 . . . . . . . . 9 𝑗
4240, 41, 20nfbr 5189 . . . . . . . 8 𝑗(𝑘 + 1) / 𝑗𝐶𝐵
4339, 42nfim 1892 . . . . . . 7 𝑗((𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → (𝑘 + 1) / 𝑗𝐶𝐵)
44 ovex 7447 . . . . . . 7 (𝑘 + 1) ∈ V
45 eqeq1 2731 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝑗 = (𝑘 + 1) ↔ (𝑘 + 1) = (𝑘 + 1)))
46453anbi3d 1439 . . . . . . . 8 (𝑗 = (𝑘 + 1) → ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) ↔ (𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1))))
47 csbeq1a 3903 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → 𝐶 = (𝑘 + 1) / 𝑗𝐶)
4847breq1d 5152 . . . . . . . 8 (𝑗 = (𝑘 + 1) → (𝐶𝐵(𝑘 + 1) / 𝑗𝐶𝐵))
4946, 48imbi12d 344 . . . . . . 7 (𝑗 = (𝑘 + 1) → (((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵) ↔ ((𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → (𝑘 + 1) / 𝑗𝐶𝐵)))
50 climinf2mpt.l . . . . . . 7 ((𝜑𝑘𝑍𝑗 = (𝑘 + 1)) → 𝐶𝐵)
5143, 44, 49, 50vtoclf 3547 . . . . . 6 ((𝜑𝑘𝑍 ∧ (𝑘 + 1) = (𝑘 + 1)) → (𝑘 + 1) / 𝑗𝐶𝐵)
5233, 34, 35, 51syl3anc 1369 . . . . 5 ((𝜑𝑘𝑍) → (𝑘 + 1) / 𝑗𝐶𝐵)
5311, 32, 52chvarfv 2226 . . . 4 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶)
5420, 21, 22cbvcsbw 3899 . . . . . 6 (𝑖 + 1) / 𝑘𝐵 = (𝑖 + 1) / 𝑗𝐶
5554a1i 11 . . . . 5 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑘𝐵 = (𝑖 + 1) / 𝑗𝐶)
56 eqidd 2728 . . . . 5 ((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 = 𝑖 / 𝑗𝐶)
5755, 56breq12d 5155 . . . 4 ((𝜑𝑖𝑍) → ((𝑖 + 1) / 𝑘𝐵𝑖 / 𝑗𝐶(𝑖 + 1) / 𝑗𝐶𝑖 / 𝑗𝐶))
5853, 57mpbird 257 . . 3 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑘𝐵𝑖 / 𝑗𝐶)
593peano2uzs 12908 . . . . . 6 (𝑖𝑍 → (𝑖 + 1) ∈ 𝑍)
6059adantl 481 . . . . 5 ((𝜑𝑖𝑍) → (𝑖 + 1) ∈ 𝑍)
61 nfv 1910 . . . . . . . . 9 𝑘(𝑖 + 1) ∈ 𝑍
625, 61nfan 1895 . . . . . . . 8 𝑘(𝜑 ∧ (𝑖 + 1) ∈ 𝑍)
63 nfcv 2898 . . . . . . . . . 10 𝑘(𝑖 + 1)
6463nfcsb1 3913 . . . . . . . . 9 𝑘(𝑖 + 1) / 𝑘𝐵
6564nfel1 2914 . . . . . . . 8 𝑘(𝑖 + 1) / 𝑘𝐵 ∈ ℝ
6662, 65nfim 1892 . . . . . . 7 𝑘((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)
67 ovex 7447 . . . . . . 7 (𝑖 + 1) ∈ V
68 eleq1 2816 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → (𝑘𝑍 ↔ (𝑖 + 1) ∈ 𝑍))
6968anbi2d 628 . . . . . . . 8 (𝑘 = (𝑖 + 1) → ((𝜑𝑘𝑍) ↔ (𝜑 ∧ (𝑖 + 1) ∈ 𝑍)))
70 csbeq1a 3903 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → 𝐵 = (𝑖 + 1) / 𝑘𝐵)
7170eleq1d 2813 . . . . . . . 8 (𝑘 = (𝑖 + 1) → (𝐵 ∈ ℝ ↔ (𝑖 + 1) / 𝑘𝐵 ∈ ℝ))
7269, 71imbi12d 344 . . . . . . 7 (𝑘 = (𝑖 + 1) → (((𝜑𝑘𝑍) → 𝐵 ∈ ℝ) ↔ ((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)))
7366, 67, 72, 6vtoclf 3547 . . . . . 6 ((𝜑 ∧ (𝑖 + 1) ∈ 𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)
7459, 73sylan2 592 . . . . 5 ((𝜑𝑖𝑍) → (𝑖 + 1) / 𝑘𝐵 ∈ ℝ)
75 eqid 2727 . . . . . 6 (𝑘𝑍𝐵) = (𝑘𝑍𝐵)
7663, 64, 70, 75fvmptf 7020 . . . . 5 (((𝑖 + 1) ∈ 𝑍(𝑖 + 1) / 𝑘𝐵 ∈ ℝ) → ((𝑘𝑍𝐵)‘(𝑖 + 1)) = (𝑖 + 1) / 𝑘𝐵)
7760, 74, 76syl2anc 583 . . . 4 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘(𝑖 + 1)) = (𝑖 + 1) / 𝑘𝐵)
78 simpr 484 . . . . 5 ((𝜑𝑖𝑍) → 𝑖𝑍)
79 nfv 1910 . . . . . . . 8 𝑗 𝑖𝑍
8036, 79nfan 1895 . . . . . . 7 𝑗(𝜑𝑖𝑍)
81 nfcsb1v 3914 . . . . . . . 8 𝑗𝑖 / 𝑗𝐶
82 nfcv 2898 . . . . . . . 8 𝑗
8381, 82nfel 2912 . . . . . . 7 𝑗𝑖 / 𝑗𝐶 ∈ ℝ
8480, 83nfim 1892 . . . . . 6 𝑗((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 ∈ ℝ)
85 eleq1 2816 . . . . . . . 8 (𝑗 = 𝑖 → (𝑗𝑍𝑖𝑍))
8685anbi2d 628 . . . . . . 7 (𝑗 = 𝑖 → ((𝜑𝑗𝑍) ↔ (𝜑𝑖𝑍)))
87 csbeq1a 3903 . . . . . . . 8 (𝑗 = 𝑖𝐶 = 𝑖 / 𝑗𝐶)
8887eleq1d 2813 . . . . . . 7 (𝑗 = 𝑖 → (𝐶 ∈ ℝ ↔ 𝑖 / 𝑗𝐶 ∈ ℝ))
8986, 88imbi12d 344 . . . . . 6 (𝑗 = 𝑖 → (((𝜑𝑗𝑍) → 𝐶 ∈ ℝ) ↔ ((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 ∈ ℝ)))
90 nfv 1910 . . . . . . . . 9 𝑘 𝑗𝑍
915, 90nfan 1895 . . . . . . . 8 𝑘(𝜑𝑗𝑍)
92 nfv 1910 . . . . . . . 8 𝑘 𝐶 ∈ ℝ
9391, 92nfim 1892 . . . . . . 7 𝑘((𝜑𝑗𝑍) → 𝐶 ∈ ℝ)
94 eleq1 2816 . . . . . . . . 9 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
9594anbi2d 628 . . . . . . . 8 (𝑘 = 𝑗 → ((𝜑𝑘𝑍) ↔ (𝜑𝑗𝑍)))
9622eleq1d 2813 . . . . . . . 8 (𝑘 = 𝑗 → (𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ))
9795, 96imbi12d 344 . . . . . . 7 (𝑘 = 𝑗 → (((𝜑𝑘𝑍) → 𝐵 ∈ ℝ) ↔ ((𝜑𝑗𝑍) → 𝐶 ∈ ℝ)))
9893, 97, 6chvarfv 2226 . . . . . 6 ((𝜑𝑗𝑍) → 𝐶 ∈ ℝ)
9984, 89, 98chvarfv 2226 . . . . 5 ((𝜑𝑖𝑍) → 𝑖 / 𝑗𝐶 ∈ ℝ)
100 nfcv 2898 . . . . . 6 𝑘𝑖
101 nfcv 2898 . . . . . 6 𝑘𝑖 / 𝑗𝐶
102100, 101, 30, 75fvmptf 7020 . . . . 5 ((𝑖𝑍𝑖 / 𝑗𝐶 ∈ ℝ) → ((𝑘𝑍𝐵)‘𝑖) = 𝑖 / 𝑗𝐶)
10378, 99, 102syl2anc 583 . . . 4 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘𝑖) = 𝑖 / 𝑗𝐶)
10477, 103breq12d 5155 . . 3 ((𝜑𝑖𝑍) → (((𝑘𝑍𝐵)‘(𝑖 + 1)) ≤ ((𝑘𝑍𝐵)‘𝑖) ↔ (𝑖 + 1) / 𝑘𝐵𝑖 / 𝑗𝐶))
10558, 104mpbird 257 . 2 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘(𝑖 + 1)) ≤ ((𝑘𝑍𝐵)‘𝑖))
106 climinf2mpt.e . . . . 5 (𝜑 → (𝑘𝑍𝐵) ∈ dom ⇝ )
107103, 99eqeltrd 2828 . . . . . . 7 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘𝑖) ∈ ℝ)
108107recnd 11264 . . . . . 6 ((𝜑𝑖𝑍) → ((𝑘𝑍𝐵)‘𝑖) ∈ ℂ)
109108ralrimiva 3141 . . . . 5 (𝜑 → ∀𝑖𝑍 ((𝑘𝑍𝐵)‘𝑖) ∈ ℂ)
1102, 3climbddf 44998 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑘𝑍𝐵) ∈ dom ⇝ ∧ ∀𝑖𝑍 ((𝑘𝑍𝐵)‘𝑖) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑖𝑍 (abs‘((𝑘𝑍𝐵)‘𝑖)) ≤ 𝑥)
1114, 106, 109, 110syl3anc 1369 . . . 4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 (abs‘((𝑘𝑍𝐵)‘𝑖)) ≤ 𝑥)
1121, 107rexabsle2 44732 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍 (abs‘((𝑘𝑍𝐵)‘𝑖)) ≤ 𝑥 ↔ (∃𝑥 ∈ ℝ ∀𝑖𝑍 ((𝑘𝑍𝐵)‘𝑖) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ ((𝑘𝑍𝐵)‘𝑖))))
113111, 112mpbid 231 . . 3 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑖𝑍 ((𝑘𝑍𝐵)‘𝑖) ≤ 𝑥 ∧ ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ ((𝑘𝑍𝐵)‘𝑖)))
114113simprd 495 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑖𝑍 𝑥 ≤ ((𝑘𝑍𝐵)‘𝑖))
1151, 2, 3, 4, 7, 105, 114climinf2 45018 1 (𝜑 → (𝑘𝑍𝐵) ⇝ inf(ran (𝑘𝑍𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wnf 1778  wcel 2099  wral 3056  wrex 3065  csb 3889   class class class wbr 5142  cmpt 5225  dom cdm 5672  ran crn 5673  cfv 6542  (class class class)co 7414  infcinf 9456  cc 11128  cr 11129  1c1 11131   + caddc 11133  *cxr 11269   < clt 11270  cle 11271  cz 12580  cuz 12844  abscabs 15205  cli 15452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-inf 9458  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-fz 13509  df-seq 13991  df-exp 14051  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-clim 15456
This theorem is referenced by:  smflimsuplem4  46134
  Copyright terms: Public domain W3C validator