![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brif2 | Structured version Visualization version GIF version |
Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.) |
Ref | Expression |
---|---|
brif2 | ⊢ (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝐶𝑅𝐴, 𝐶𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4531 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | breq2d 5155 | . 2 ⊢ (𝜑 → (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ 𝐶𝑅𝐴)) |
3 | iffalse 4534 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
4 | 3 | breq2d 5155 | . 2 ⊢ (¬ 𝜑 → (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ 𝐶𝑅𝐵)) |
5 | 2, 4 | casesifp 1076 | 1 ⊢ (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝐶𝑅𝐴, 𝐶𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 if-wif 1061 ifcif 4525 class class class wbr 5143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ifp 1062 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5144 |
This theorem is referenced by: prjspner01 42040 |
Copyright terms: Public domain | W3C validator |