Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brif12 Structured version   Visualization version   GIF version

Theorem brif12 41704
Description: Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.)
Assertion
Ref Expression
brif12 (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐷))

Proof of Theorem brif12
StepHypRef Expression
1 iftrue 4531 . . 3 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
2 iftrue 4531 . . 3 (𝜑 → if(𝜑, 𝐶, 𝐷) = 𝐶)
31, 2breq12d 5156 . 2 (𝜑 → (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ 𝐴𝑅𝐶))
4 iffalse 4534 . . 3 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
5 iffalse 4534 . . 3 𝜑 → if(𝜑, 𝐶, 𝐷) = 𝐷)
64, 5breq12d 5156 . 2 𝜑 → (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ 𝐵𝑅𝐷))
73, 6casesifp 1076 1 (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  if-wif 1061  ifcif 4525   class class class wbr 5143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ifp 1062  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator