Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1228 Structured version   Visualization version   GIF version

Theorem bnj1228 34578
Description: Existence of a minimal element in certain classes: if 𝑅 is well-founded and set-like on 𝐴, then every nonempty subclass of 𝐴 has a minimal element. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1228.1 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
Assertion
Ref Expression
bnj1228 ((𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Distinct variable groups:   𝑦,𝐴   𝑤,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑤)   𝐵(𝑥)   𝑅(𝑤)

Proof of Theorem bnj1228
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj69 34577 . 2 ((𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑧𝐵𝑦𝐵 ¬ 𝑦𝑅𝑧)
2 nfv 1910 . . . 4 𝑧(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
3 bnj1228.1 . . . . . . 7 (𝑤𝐵 → ∀𝑥 𝑤𝐵)
43nfcii 2882 . . . . . 6 𝑥𝐵
54nfcri 2885 . . . . 5 𝑥 𝑧𝐵
6 nfv 1910 . . . . . 6 𝑥 ¬ 𝑦𝑅𝑧
74, 6nfralw 3303 . . . . 5 𝑥𝑦𝐵 ¬ 𝑦𝑅𝑧
85, 7nfan 1895 . . . 4 𝑥(𝑧𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧)
9 eleq1w 2811 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐵𝑧𝐵))
10 breq2 5146 . . . . . . 7 (𝑥 = 𝑧 → (𝑦𝑅𝑥𝑦𝑅𝑧))
1110notbid 318 . . . . . 6 (𝑥 = 𝑧 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝑧))
1211ralbidv 3172 . . . . 5 (𝑥 = 𝑧 → (∀𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧))
139, 12anbi12d 630 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ↔ (𝑧𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧)))
142, 8, 13cbvexv1 2333 . . 3 (∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥) ↔ ∃𝑧(𝑧𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧))
15 df-rex 3066 . . 3 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥(𝑥𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥))
16 df-rex 3066 . . 3 (∃𝑧𝐵𝑦𝐵 ¬ 𝑦𝑅𝑧 ↔ ∃𝑧(𝑧𝐵 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝑧))
1714, 15, 163bitr4i 303 . 2 (∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥 ↔ ∃𝑧𝐵𝑦𝐵 ¬ 𝑦𝑅𝑧)
181, 17sylibr 233 1 ((𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085  wal 1532  wex 1774  wcel 2099  wne 2935  wral 3056  wrex 3065  wss 3944  c0 4318   class class class wbr 5142   FrSe w-bnj15 34259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-reg 9607  ax-inf2 9656
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7865  df-1o 8480  df-bnj17 34254  df-bnj14 34256  df-bnj13 34258  df-bnj15 34260  df-bnj18 34262  df-bnj19 34264
This theorem is referenced by:  bnj1204  34579  bnj1311  34591  bnj1312  34625
  Copyright terms: Public domain W3C validator