![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bnj17 | Structured version Visualization version GIF version |
Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-bnj17 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | wth | . . 3 wff 𝜃 | |
5 | 1, 2, 3, 4 | w-bnj17 34253 | . 2 wff (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) |
6 | 1, 2, 3 | w3a 1085 | . . 3 wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
7 | 6, 4 | wa 395 | . 2 wff ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) |
8 | 5, 7 | wb 205 | 1 wff ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
Colors of variables: wff setvar class |
This definition is referenced by: bnj248 34267 bnj250 34268 bnj258 34275 bnj268 34276 bnj291 34278 bnj312 34279 bnj446 34284 bnj645 34317 bnj658 34318 bnj887 34332 bnj919 34334 bnj945 34340 bnj951 34342 bnj982 34345 bnj1019 34346 bnj518 34453 bnj571 34473 bnj594 34479 bnj916 34500 bnj966 34511 bnj967 34512 bnj1006 34527 bnj1018g 34530 bnj1018 34531 bnj1040 34539 bnj1174 34570 bnj1175 34571 bnj1311 34591 |
Copyright terms: Public domain | W3C validator |