Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bnj17 Structured version   Visualization version   GIF version

Definition df-bnj17 34254
Description: Define the 4-way conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
df-bnj17 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))

Detailed syntax breakdown of Definition df-bnj17
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
3 wch . . 3 wff 𝜒
4 wth . . 3 wff 𝜃
51, 2, 3, 4w-bnj17 34253 . 2 wff (𝜑𝜓𝜒𝜃)
61, 2, 3w3a 1085 . . 3 wff (𝜑𝜓𝜒)
76, 4wa 395 . 2 wff ((𝜑𝜓𝜒) ∧ 𝜃)
85, 7wb 205 1 wff ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))
Colors of variables: wff setvar class
This definition is referenced by:  bnj248  34267  bnj250  34268  bnj258  34275  bnj268  34276  bnj291  34278  bnj312  34279  bnj446  34284  bnj645  34317  bnj658  34318  bnj887  34332  bnj919  34334  bnj945  34340  bnj951  34342  bnj982  34345  bnj1019  34346  bnj518  34453  bnj571  34473  bnj594  34479  bnj916  34500  bnj966  34511  bnj967  34512  bnj1006  34527  bnj1018g  34530  bnj1018  34531  bnj1040  34539  bnj1174  34570  bnj1175  34571  bnj1311  34591
  Copyright terms: Public domain W3C validator