MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zmax Structured version   Visualization version   GIF version

Theorem zmax 12945
Description: There is a unique largest integer less than or equal to a given real number. (Contributed by NM, 15-Nov-2004.)
Assertion
Ref Expression
zmax (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem zmax
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 renegcl 11539 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2 zmin 12944 . . 3 (-𝐴 ∈ ℝ → ∃!𝑧 ∈ ℤ (-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)))
31, 2syl 17 . 2 (𝐴 ∈ ℝ → ∃!𝑧 ∈ ℤ (-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)))
4 znegcl 12613 . . . 4 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
5 znegcl 12613 . . . . 5 (𝑧 ∈ ℤ → -𝑧 ∈ ℤ)
6 zcn 12579 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
7 zcn 12579 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
8 negcon2 11529 . . . . . 6 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧 = -𝑥𝑥 = -𝑧))
96, 7, 8syl2an 595 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑧 = -𝑥𝑥 = -𝑧))
105, 9reuhyp 5414 . . . 4 (𝑧 ∈ ℤ → ∃!𝑥 ∈ ℤ 𝑧 = -𝑥)
11 breq2 5146 . . . . 5 (𝑧 = -𝑥 → (-𝐴𝑧 ↔ -𝐴 ≤ -𝑥))
12 breq1 5145 . . . . . . 7 (𝑧 = -𝑥 → (𝑧𝑤 ↔ -𝑥𝑤))
1312imbi2d 340 . . . . . 6 (𝑧 = -𝑥 → ((-𝐴𝑤𝑧𝑤) ↔ (-𝐴𝑤 → -𝑥𝑤)))
1413ralbidv 3172 . . . . 5 (𝑧 = -𝑥 → (∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤) ↔ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤)))
1511, 14anbi12d 630 . . . 4 (𝑧 = -𝑥 → ((-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)) ↔ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤))))
164, 10, 15reuxfr1 3745 . . 3 (∃!𝑧 ∈ ℤ (-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤)))
17 zre 12578 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
18 leneg 11733 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
1917, 18sylan 579 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
2019ancoms 458 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
21 znegcl 12613 . . . . . . . . . 10 (𝑤 ∈ ℤ → -𝑤 ∈ ℤ)
22 breq1 5145 . . . . . . . . . . . 12 (𝑦 = -𝑤 → (𝑦𝐴 ↔ -𝑤𝐴))
23 breq1 5145 . . . . . . . . . . . 12 (𝑦 = -𝑤 → (𝑦𝑥 ↔ -𝑤𝑥))
2422, 23imbi12d 344 . . . . . . . . . . 11 (𝑦 = -𝑤 → ((𝑦𝐴𝑦𝑥) ↔ (-𝑤𝐴 → -𝑤𝑥)))
2524rspcv 3603 . . . . . . . . . 10 (-𝑤 ∈ ℤ → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → (-𝑤𝐴 → -𝑤𝑥)))
2621, 25syl 17 . . . . . . . . 9 (𝑤 ∈ ℤ → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → (-𝑤𝐴 → -𝑤𝑥)))
27 zre 12578 . . . . . . . . . . . . 13 (𝑤 ∈ ℤ → 𝑤 ∈ ℝ)
28 lenegcon1 11734 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (-𝑤𝐴 ↔ -𝐴𝑤))
2928adantrr 716 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (-𝑤𝐴 ↔ -𝐴𝑤))
30 lenegcon1 11734 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝑤𝑥 ↔ -𝑥𝑤))
3117, 30sylan2 592 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-𝑤𝑥 ↔ -𝑥𝑤))
3231adantrl 715 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (-𝑤𝑥 ↔ -𝑥𝑤))
3329, 32imbi12d 344 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((-𝑤𝐴 → -𝑤𝑥) ↔ (-𝐴𝑤 → -𝑥𝑤)))
3427, 33sylan 579 . . . . . . . . . . . 12 ((𝑤 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((-𝑤𝐴 → -𝑤𝑥) ↔ (-𝐴𝑤 → -𝑥𝑤)))
3534biimpd 228 . . . . . . . . . . 11 ((𝑤 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((-𝑤𝐴 → -𝑤𝑥) → (-𝐴𝑤 → -𝑥𝑤)))
3635ex 412 . . . . . . . . . 10 (𝑤 ∈ ℤ → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝑤𝐴 → -𝑤𝑥) → (-𝐴𝑤 → -𝑥𝑤))))
3736com23 86 . . . . . . . . 9 (𝑤 ∈ ℤ → ((-𝑤𝐴 → -𝑤𝑥) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-𝐴𝑤 → -𝑥𝑤))))
3826, 37syld 47 . . . . . . . 8 (𝑤 ∈ ℤ → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-𝐴𝑤 → -𝑥𝑤))))
3938com13 88 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → (𝑤 ∈ ℤ → (-𝐴𝑤 → -𝑥𝑤))))
4039ralrimdv 3147 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤)))
41 znegcl 12613 . . . . . . . . . 10 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
42 breq2 5146 . . . . . . . . . . . 12 (𝑤 = -𝑦 → (-𝐴𝑤 ↔ -𝐴 ≤ -𝑦))
43 breq2 5146 . . . . . . . . . . . 12 (𝑤 = -𝑦 → (-𝑥𝑤 ↔ -𝑥 ≤ -𝑦))
4442, 43imbi12d 344 . . . . . . . . . . 11 (𝑤 = -𝑦 → ((-𝐴𝑤 → -𝑥𝑤) ↔ (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
4544rspcv 3603 . . . . . . . . . 10 (-𝑦 ∈ ℤ → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
4641, 45syl 17 . . . . . . . . 9 (𝑦 ∈ ℤ → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
47 zre 12578 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
48 leneg 11733 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑦𝐴 ↔ -𝐴 ≤ -𝑦))
4948adantrr 716 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (𝑦𝐴 ↔ -𝐴 ≤ -𝑦))
50 leneg 11733 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝑥 ↔ -𝑥 ≤ -𝑦))
5117, 50sylan2 592 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥 ↔ -𝑥 ≤ -𝑦))
5251adantrl 715 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (𝑦𝑥 ↔ -𝑥 ≤ -𝑦))
5349, 52imbi12d 344 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((𝑦𝐴𝑦𝑥) ↔ (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
5447, 53sylan 579 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((𝑦𝐴𝑦𝑥) ↔ (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
5554exbiri 810 . . . . . . . . . 10 (𝑦 ∈ ℤ → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦) → (𝑦𝐴𝑦𝑥))))
5655com23 86 . . . . . . . . 9 (𝑦 ∈ ℤ → ((-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑦𝐴𝑦𝑥))))
5746, 56syld 47 . . . . . . . 8 (𝑦 ∈ ℤ → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑦𝐴𝑦𝑥))))
5857com13 88 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → (𝑦 ∈ ℤ → (𝑦𝐴𝑦𝑥))))
5958ralrimdv 3147 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)))
6040, 59impbid 211 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) ↔ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤)))
6120, 60anbi12d 630 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)) ↔ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤))))
6261reubidva 3387 . . 3 (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤))))
6316, 62bitr4id 290 . 2 (𝐴 ∈ ℝ → (∃!𝑧 ∈ ℤ (-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)) ↔ ∃!𝑥 ∈ ℤ (𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥))))
643, 63mpbid 231 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3056  ∃!wreu 3369   class class class wbr 5142  cc 11122  cr 11123  cle 11265  -cneg 11461  cz 12574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-pre-sup 11202
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-sup 9451  df-inf 9452  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-n0 12489  df-z 12575  df-uz 12839
This theorem is referenced by:  flval2  13797
  Copyright terms: Public domain W3C validator