MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem4a Structured version   Visualization version   GIF version

Theorem yonedalem4a 18261
Description: Lemma for yoneda 18269. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yonedalem21.f (𝜑𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (𝜑𝑋𝐵)
yonedalem4.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
yonedalem4.p (𝜑𝐴 ∈ ((1st𝐹)‘𝑋))
Assertion
Ref Expression
yonedalem4a (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 1   𝑢,𝑔,𝐴,𝑦   𝑢,𝑓,𝐶,𝑔,𝑥,𝑦   𝑓,𝐸,𝑔,𝑢,𝑦   𝑓,𝐹,𝑔,𝑢,𝑥,𝑦   𝐵,𝑓,𝑔,𝑢,𝑥,𝑦   𝑓,𝑂,𝑔,𝑢,𝑥,𝑦   𝑆,𝑓,𝑔,𝑢,𝑥,𝑦   𝑄,𝑓,𝑔,𝑢,𝑥   𝑇,𝑓,𝑔,𝑢,𝑦   𝜑,𝑓,𝑔,𝑢,𝑥,𝑦   𝑢,𝑅   𝑓,𝑌,𝑔,𝑢,𝑥,𝑦   𝑓,𝑍,𝑔,𝑢,𝑥,𝑦   𝑓,𝑋,𝑔,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝑄(𝑦)   𝑅(𝑥,𝑦,𝑓,𝑔)   𝑇(𝑥)   𝑈(𝑥,𝑦,𝑢,𝑓,𝑔)   1 (𝑢)   𝐸(𝑥)   𝐻(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑁(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑊(𝑥,𝑦,𝑢,𝑓,𝑔)

Proof of Theorem yonedalem4a
StepHypRef Expression
1 yonedalem4.n . . . 4 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
21a1i 11 . . 3 (𝜑𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢))))))
3 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → 𝑓 = 𝐹)
43fveq2d 6896 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → (1st𝑓) = (1st𝐹))
5 simprr 772 . . . . 5 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → 𝑥 = 𝑋)
64, 5fveq12d 6899 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → ((1st𝑓)‘𝑥) = ((1st𝐹)‘𝑋))
7 simplrr 777 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → 𝑥 = 𝑋)
87oveq2d 7431 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐶)𝑋))
9 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → 𝑓 = 𝐹)
109fveq2d 6896 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (2nd𝑓) = (2nd𝐹))
11 eqidd 2729 . . . . . . . . 9 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → 𝑦 = 𝑦)
1210, 7, 11oveq123d 7436 . . . . . . . 8 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (𝑥(2nd𝑓)𝑦) = (𝑋(2nd𝐹)𝑦))
1312fveq1d 6894 . . . . . . 7 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → ((𝑥(2nd𝑓)𝑦)‘𝑔) = ((𝑋(2nd𝐹)𝑦)‘𝑔))
1413fveq1d 6894 . . . . . 6 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢) = (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢))
158, 14mpteq12dv 5234 . . . . 5 (((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) ∧ 𝑦𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))
1615mpteq2dva 5243 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢))) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢))))
176, 16mpteq12dv 5234 . . 3 ((𝜑 ∧ (𝑓 = 𝐹𝑥 = 𝑋)) → (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))) = (𝑢 ∈ ((1st𝐹)‘𝑋) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))))
18 yonedalem21.f . . 3 (𝜑𝐹 ∈ (𝑂 Func 𝑆))
19 yonedalem21.x . . 3 (𝜑𝑋𝐵)
20 fvex 6905 . . . . 5 ((1st𝐹)‘𝑋) ∈ V
2120mptex 7230 . . . 4 (𝑢 ∈ ((1st𝐹)‘𝑋) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))) ∈ V
2221a1i 11 . . 3 (𝜑 → (𝑢 ∈ ((1st𝐹)‘𝑋) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))) ∈ V)
232, 17, 18, 19, 22ovmpod 7568 . 2 (𝜑 → (𝐹𝑁𝑋) = (𝑢 ∈ ((1st𝐹)‘𝑋) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)))))
24 simpr 484 . . . . 5 ((𝜑𝑢 = 𝐴) → 𝑢 = 𝐴)
2524fveq2d 6896 . . . 4 ((𝜑𝑢 = 𝐴) → (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢) = (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))
2625mpteq2dv 5245 . . 3 ((𝜑𝑢 = 𝐴) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))
2726mpteq2dv 5245 . 2 ((𝜑𝑢 = 𝐴) → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝑢))) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
28 yonedalem4.p . 2 (𝜑𝐴 ∈ ((1st𝐹)‘𝑋))
29 yoneda.b . . . . 5 𝐵 = (Base‘𝐶)
3029fvexi 6906 . . . 4 𝐵 ∈ V
3130mptex 7230 . . 3 (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))) ∈ V
3231a1i 11 . 2 (𝜑 → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))) ∈ V)
3323, 27, 28, 32fvmptd 7007 1 (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3470  cun 3943  wss 3945  cop 4631  cmpt 5226  ran crn 5674  cfv 6543  (class class class)co 7415  cmpo 7417  1st c1st 7986  2nd c2nd 7987  tpos ctpos 8225  Basecbs 17174  Hom chom 17238  Catccat 17638  Idccid 17639  Homf chomf 17640  oppCatcoppc 17685   Func cfunc 17834  func ccofu 17836   FuncCat cfuc 17926  SetCatcsetc 18058   ×c cxpc 18153   1stF c1stf 18154   2ndF c2ndf 18155   ⟨,⟩F cprf 18156   evalF cevlf 18195  HomFchof 18234  Yoncyon 18235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420
This theorem is referenced by:  yonedalem4b  18262  yonedalem4c  18263  yonffthlem  18268
  Copyright terms: Public domain W3C validator