![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmetcl | Structured version Visualization version GIF version |
Description: Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
Ref | Expression |
---|---|
xmetcl | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetf 24253 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
2 | fovcdm 7595 | . 2 ⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
3 | 1, 2 | syl3an1 1160 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 ∈ wcel 2098 × cxp 5678 ⟶wf 6547 ‘cfv 6551 (class class class)co 7424 ℝ*cxr 11283 ∞Metcxmet 21269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-fv 6559 df-ov 7427 df-oprab 7428 df-mpo 7429 df-map 8851 df-xr 11288 df-xmet 21277 |
This theorem is referenced by: xmetge0 24268 xmetlecl 24270 xmetsym 24271 xmetrtri 24279 xmetrtri2 24280 xmetgt0 24282 prdsdsf 24291 prdsxmetlem 24292 imasdsf1olem 24297 imasf1oxmet 24299 xpsdsval 24305 xblpnf 24320 bldisj 24322 blgt0 24323 xblss2 24326 blhalf 24329 xbln0 24338 blin 24345 blss 24349 xmscl 24386 prdsbl 24418 blsscls2 24431 blcld 24432 blcls 24433 comet 24440 stdbdxmet 24442 stdbdmet 24443 stdbdbl 24444 tmsxpsval2 24466 metcnpi3 24473 txmetcnp 24474 xrsmopn 24746 metdcnlem 24770 metdsf 24782 metdsge 24783 metdstri 24785 metdsle 24786 metdscnlem 24789 metnrmlem1 24793 metnrmlem3 24795 lmnn 25209 iscfil2 25212 iscau3 25224 dvlip2 25946 heicant 37133 |
Copyright terms: Public domain | W3C validator |